首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A recent comparative proteomics study identified the short-chain dehydrogenase (Sch1) as being required for asexual sporulation (Tan et al. Eukaryotic Cell 7:1916–1929, 2008). Metabolite profiling was undertaken on the mutant strains of Stagonospora nodorum lacking the Sch1 gene to help elucidate its role. Gas chromatography-mass spectrometry of the polar metabolites in the Sch1 mutants identified a secondary metabolite at a 200-fold greater concentration than observed in the wild-type strains. Comparative analysis of the secondary metabolite and the mycotoxin alternariol using ESI-MS/MS confirmed the identity of the compound as alternariol. This is the first report to confirm the presence of a mycotoxin in S. nodorum and compelling the field to consider the health implication of this disease.  相似文献   

2.
The fungus Stagonospora nodorum is the causal agent of stagonospora nodorum blotch (syn. leaf and glume blotch) disease of wheat. The Gna1-encoded Gα protein is an important signal transduction component in the fungus, which is required for full pathogenicity, sporulation and extracellular depolymerase production. In this study, we sought to gain a better understanding of defects associated with the gna1 mutant by using two-dimensional gel electrophoresis to analyse the extracellular proteome for differences to the wildtype. Mass spectrometry analysis of altered abundant protein spots and peptide matching to the Stagonospora nodorum genome database have led to the identification of genes implicated in cell wall degradation, proteolysis, RNA hydrolysis and aromatic compound metabolism. In addition, quantitative RT-PCR has demonstrated that some of the encoding genes showed differential expression throughout host infection. Implications of these proteins and their corresponding genes in fungal virulence are discussed.  相似文献   

3.
4.
5.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

6.
Tannerella forsythia is a Gram‐negative anaerobe that is one of the most prominent inhabitants of the sub‐gingival plaque biofilm, which is crucial for causing periodontitis. We have used iTRAQ proteomics to identify and quantify alterations in global protein expression of T. forsythia during growth in a biofilm. This is the first proteomic study concentrating on biofilm growth in this key periodontal pathogen, and this study has identified several changes in protein expression. Moreover, we introduce a rigorous statistical method utilising peptide‐level intensities of iTRAQ reporters to determine which proteins are significantly regulated. In total, 348 proteins were identified and quantified with the expression of 44 proteins being significantly altered between biofilm and planktonic cells. We identified proteins from all cell compartments, and highlighted a marked upregulation in the relative abundances of predicted outer membrane proteins in biofilm cells. These included putative transport systems and the T. forsythia S‐layer proteins. These data and our finding that the butyrate production pathway is markedly downregulated in biofilms indicate possible alterations in host interaction capability. We also identified upregulation of putative oxidative stress response proteins, and showed that biofilm cells are 10 to 20 fold more resistant to oxidative stress. This may represent an important adaptation of this organism to prolonged persistence and immune evasion in the oral cavity.  相似文献   

7.
8.
9.
Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches – fluorescence two‐dimensional difference gel electrophoresis (2‐D DIGE) and multiplexed isobaric tagging technology (iTRAQ) – were implemented. Several proteins involved in sulfur assimilation, redox homeostasis, and xenobiotic detoxification were found to be up‐regulated. Multiple proteins involved in protein synthesis and processing were down‐regulated. While the two proteomics approaches identified different sets of proteins, the proteins identified in both datasets are involved in similar biological processes. We show that 2‐D DIGE and iTRAQ results are complementary, that the data obtained independently using the two techniques validate one another, and that the quality of iTRAQ results depends on both the number of biological replicates and the number of sample injections. This study determined the involvement of enzymes such as peptide methionine sulfoxide reductase and 2‐nitropropane dioxygenase in alternatives redox‐regulation mechanisms, as well as O‐acetylserine sulfhydrylase, glutathione‐S‐transferase and glutathione‐conjugate membrane transporter, as essential players in the Cd hyperaccumation and tolerance of B. juncea.  相似文献   

10.
11.
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.  相似文献   

12.
Shigang Gao  Tong Liu  Yingying Li  Qiong Wu  Kehe Fu  Jie Chen 《Proteomics》2012,12(23-24):3524-3535
Curvularia lunata is an important pathogen causing Curvularia leaf spot in maize. Significant pathogenic variation has been found in C. lunata. To better understand the mechanism of this phenomenon, we consecutively put the selective pressures of resistant maize population on C. lunata strain WS18 (low virulence) artificially. As a result, the virulence of this strain was significantly enhanced. Using 2DE, 12 up‐regulated and four down‐regulated proteins were identified in virulence‐increased strain compared to WS18. Our analysis revealed that melanin synthesis‐related proteins (Brn1, Brn2, and scytalone dehydratase) and stress tolerance‐related proteins (HSP 70) directly involved in the potential virulence growth as crucial markers or factors in C. lunata. To validate 2DE results and screen differential genes at mRNA level, we constructed a subtracted cDNA library (tester: virulence‐increased strain; driver: WS18). A total of 188 unigenes were obtained this way, of which 14 were indicators for the evolution of pathogen virulence. Brn1 and hsp genes exhibited similar expression patterns corresponding to proteins detected by 2DE. Overall, our results indicated that differential proteins or genes, being involved with melanin synthesis or tolerance response to stress, could be considered as hallmarks of virulence increase in C. lunata.  相似文献   

13.
Dysregulation of the insulin‐like growth factor 1 receptor signalling network is implicated in tumour growth and resistance to chemotherapy. We explored proteomic changes resulting from insulin‐like growth factor 1 stimulation of MCF‐7 adenocarcinoma cells as a function of time. Quantitative analysis using iTRAQ? reagents and 2‐D LC‐MS/MS analysis of three biological replicates resulted in the identification of 899 proteins (p≤0.05) with an estimated mean false‐positive rate of 2.6%. Quantitative protein expression was obtained from 681 proteins. Further analysis by supervised k‐means clustering identified five temporal clusters, which were submitted to the FuncAssociate server to assign overrepresented gene ontology terms. Proteins associated with vesicle transport were significantly overrepresented. We further analyzed our data set for proteins showing temporal significance using the software, extraction and analysis of differential gene expression, resulting in 20 significantly and temporally changing proteins (p≤0.1). These significant proteins play roles in, among others, altered glucose metabolism (lactate dehydrogenase A and pyruvate kinase M1/M2) and cellular stress (nascent polypeptide‐associated complex subunit α and heat shock (HSC70) proteins). We used multiple reaction monitoring to validate these interesting proteins and have revealed several differences in relative peptide expression corresponding to protein isoforms and variants.  相似文献   

14.
Zymoseptoria tritici causes the major fungal wheat disease septoria tritici blotch, and is increasingly being used as a model for transmission and population genetics, as well as host–pathogen interactions. Here, we study the biological function of ZtWor1, the orthologue of Wor1 in the fungal human pathogen Candida albicans, as a representative of a superfamily of regulatory proteins involved in dimorphic switching. In Z. tritici, this gene is pivotal for pathogenesis, as ZtWor1 mutants were nonpathogenic and complementation restored the wild‐type phenotypes. In planta expression analyses showed that ZtWor1 is up‐regulated during the initiation of colonization and fructification, and regulates candidate effector genes, including one that was discovered after comparative proteome analysis of the Z. tritici wild‐type strain and the ZtWor1 mutant, which was particularly expressed in planta. Cell fusion and anastomosis occur frequently in ZtWor1 mutants, reminiscent of mutants of MgGpb1, the β‐subunit of the heterotrimeric G protein. Comparative expression of ZtWor1 in knock‐out strains of MgGpb1 and MgTpk2, the catalytic subunit of protein kinase A, suggests that ZtWor1 is downstream of the cyclic adenosine monophosphate (cAMP) pathway that is crucial for pathogenesis in many fungal plant pathogens.  相似文献   

15.
16.
Proteomics has been shown to significantly contribute to the investigation of the pathogenicity of the extremely infectious bacteria Francisella tularensis. In this study, the authors employed iTRAQ quantitative proteomic analysis in order to monitor alterations in proteomes of F. tularensis ssp. holarctica live vaccine strain and F. tularensis ssp. tularensis SCHU S4 associated with the cultivation at different temperatures or in the stationary phase. Correlated production of the identified proteins studied by the exploratory statistical analysis revealed novel candidates for virulence factors that were regulated in a similar manner to the genes encoded in the Francisella Pathogenicity Island. Moreover, the assessment of the adaptation of live vaccine strain and SCHU S4 strain to the examined stimuli uncovered differences in their physiological responses to the stationary phase of growth.  相似文献   

17.
The fungus Alternaria alternata is a common spot‐producing plant pathogen. During the past decade, tobacco brown spot disease caused by this fungus has became prevalent in China and lead to significant losses. To better understand the molecular pathogenesis of this fungus, the aapk1 gene encoding a cAMP‐dependent protein kinase catalytic subunit was cloned, sequenced and characterized. The aapk1 deletion mutants were identified from hygromycin‐resistant transformants by PCR strategy and confirmed by Southern blot analysis and RT‐PCR. The aapk1 deletion mutant exhibited reduced vegetative growth and was less toxic than the wild‐type strain sd1. Deletion of aapk1 also delayed disease development on detached tobacco leaves. Thus, we propose that the cAMP signalling pathway is involved in mycelia growth and pathogenic phenotype of Alternaria alternata.  相似文献   

18.
19.
Extracellular adenosine 5′‐triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca2+, nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non‐hydrolysable analogue as probes to identify the molecular and physiological effects of eATP‐mediated signalling in tobacco. 2‐DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence‐related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号