共查询到20条相似文献,搜索用时 15 毫秒
1.
Donald J. Winzor 《Journal of molecular recognition : JMR》2011,24(2):139-148
The objective of this review is to remove empiricism from the characterization of immunospecific interactions by enzyme‐linked immunosorbent assay (ELISA). In place of the original presumption that the absorbance generated by the enzyme‐linked assay could be regarded as a measure of free antibody concentration, the stance is taken that the parameter being monitored is the concentration of antibody complexed with immobilized antigen on the microtiter plate. After the presentation of general binding theory that takes ligand multivalence into account, that theory is adapted to incorporate the simplifying circumstances that prevail in an ELISA study. Validity of the original expressions for characterizing antigen–antibody interactions by competitive ELISA is confirmed, thereby refuting reported concerns about the need for amendment of the theoretical expressions to take into account bivalence of the antibody. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
Andrea González-Mu?oz Evert Bokma Desmond O’Shea Kevin Minton Martin Strain Katherine Vousden Christine Rossant Lutz Jermutus Ralph Minter 《MABS-AUSTIN》2012,4(6):664-672
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions. 相似文献
3.
《MABS-AUSTIN》2013,5(6):664-672
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions. 相似文献
4.
Bing Li Ashley E Fouts Katharina Stengel Peng Luan Michael Dillon Wei-Ching Liang Becket Feierbach Robert F Kelley Isidro H?tzel 《MABS-AUSTIN》2014,6(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire. 相似文献
5.
《MABS-AUSTIN》2013,5(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire. 相似文献
6.
7.
Yin J Beuscher AE Andryski SE Stevens RC Schultz PG 《Journal of molecular biology》2003,330(4):651-656
The germline precursor to the ferrochelatase antibody 7G12 was found to bind the polyether jeffamine in addition to its cognate hapten N-methylmesoporphyrin. A comparison of the X-ray crystal structures of the ligand-free germline Fab and its complex with either hapten or jeffamine reveals that the germline antibody undergoes significant conformational changes upon the binding of these two structurally distinct ligands, which lead to increased antibody-ligand complementarity. The five somatic mutations introduced during affinity maturation lead to enhanced binding affinity for hapten and a loss in affinity for jeffamine. Moreover, a comparison of the crystal structures of the germline and affinity-matured antibodies reveals that somatic mutations not only fix the optimal binding site conformation for the hapten, but also introduce interactions that interfere with the binding of non-hapten molecules. The structural plasticity of this germline antibody and the structural effects of the somatic mutations that result in enhanced affinity and specificity for hapten likely represent general mechanisms used by the immune response, and perhaps primitive proteins, to evolve high affinity, selective receptors for so many distinct chemical structures. 相似文献
8.
Chodorge M Züger S Stirnimann C Briand C Jermutus L Grütter MG Minter RR 《Cell death and differentiation》2012,19(7):1187-1195
Receptor agonism remains poorly understood at the molecular and mechanistic level. In this study, we identified a fully human anti-Fas antibody that could efficiently trigger apoptosis and therefore function as a potent agonist. Protein engineering and crystallography were used to mechanistically understand the agonistic activity of the antibody. The crystal structure of the complex was determined at 1.9 Å resolution and provided insights into epitope recognition and comparisons with the natural ligand FasL (Fas ligand). When we affinity-matured the agonist antibody, we observed that, surprisingly, the higher-affinity antibodies demonstrated a significant reduction, rather than an increase, in agonist activity at the Fas receptor. We propose and experimentally demonstrate a model to explain this non-intuitive impact of affinity on agonist antibody signalling and explore the implications for the discovery of therapeutic agonists in general. 相似文献
9.
Animesh Sarker Abhishek Singh Rathore Md Fahim Khalid Rinkoo Devi Gupta 《The Journal of biological chemistry》2022,298(4)
Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy. 相似文献
10.
Paul McDonald Corazon Victa Jayme N. Carter‐Franklin Robert Fahrner 《Biotechnology and bioengineering》2009,102(4):1141-1151
We evaluated the potential for polyelectrolyte induced precipitation of antibodies to replace traditional chromatography purification. We investigated the impact of solution pH, solution ionic strength and polyelectrolyte molecular weight on the degree of precipitation using the anionic polyelectrolytes polyvinylsulfonic acid (PVS), polyacrylic acid (PAA), and polystyrenesulfonic acid (PSS). As we approached the pI of the antibody, charge neutralization of the antibody reduced the antibody–polyelectrolyte interaction, reducing antibody precipitation. At a given pH, increasing solution ionic strength prevented the ionic interaction between the polyelectrolyte and the antibody, reducing antibody precipitation. With increasing pH of precipitation, there was an increase in impurity clearance. Increasing polyelectrolyte molecular weight allowed the precipitation to be performed under conditions of higher ionic strength. PVS was selected as the preferred polyelectrolyte based on step yield following resolubilization, purification performance, as well as the nature of the precipitate. We evaluated PVS precipitation as a replacement for the initial capture step, as well as an intermediate polishing step in the purification of a humanized monoclonal antibody. PVS precipitation separated the antibody from host cell impurities such as host cell proteins (HCP) and DNA, process impurities such as leached protein A, insulin and gentamicin, as well as antibody fragments and aggregates. PVS was subsequently removed from antibody pools to <1 µg/mg using anion exchange chromatography. PVS precipitation did not impact the biological activity of the resolubilized antibody. Biotechnol. Bioeng. 2009;102: 1141–1151. © 2008 Wiley Periodicals, Inc. 相似文献
11.
Razai A Garcia-Rodriguez C Lou J Geren IN Forsyth CM Robles Y Tsai R Smith TJ Smith LA Siegel RW Feldhaus M Marks JD 《Journal of molecular biology》2005,351(1):158-169
Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. Potential use of BoNT as a biothreat agent has made development of sensitive assays for toxin detection and potent antitoxin for treatment of intoxication a high priority. To improve detection and treatment of botulism, molecular evolution and yeast display were used to increase the affinity of two neutralizing single chain Fv (scFv) antibodies binding BoNT serotype A (BoNT/A). Selection of yeast displayed scFv libraries was performed using methods to select for both increased association rate constant (k(on)) and decreased dissociation rate constants (k(off)). A single cycle of error prone mutagenesis increased the affinity of the 3D12 scFv 45-fold from a K(D) of 9.43x10(-10)M to a K(D) of 2.1x10(-11)M. Affinity of the HuC25 scFv was increased 37-fold from 8.44x10(-10)M to 2.26x10(-11)M using libraries constructed by both random and site directed mutagenesis. scFv variable region genes were used to construct IgG for use in detection assays and in vivo neutralization studies. While IgG had the same relative increases in affinity as scFv, (35-fold and 81-fold, respectively, for 3D12 and HuC25) higher solution equilibrium binding constants were observed for the IgG, with the 3D12 K(D) increasing from 6.07x10(-11)M to 1.71x10(-12)M and the HuC25 K(D) increasing from 4.51x10(-11)M to 5.54x10(-13)M. Affinity increased due to both an increase in k(on), as well as slowing of k(off). Higher affinity antibodies had increased sensitivity, allowing detection of BoNT/A at concentrations as low as 1x10(-13)M. The antibodies will also allow testing of the role of affinity in in vivo toxin neutralization and could lead to the generation of more potent antitoxin. 相似文献
12.
We attempted to improve antibody affinity by varying glycosylation on the light chain variable region. The human hybridoma line HB4C5 produces an antibody reactive to lung adenocarcinoma, which possess a N-glycosylated carbohydrate chain on the light chain hypervariable region. It has been shown that altering this carbohydrate structure can be accomplished by varying the level of N-acetylglucosamine in glucose free medium, a change in the carbohydrate chain could be induced which resulted in modifying antigen binding. By culturing the cells in media containing more than 20 mM N-acetylglucosamine, cells produced antibody with 10 fold improved affinity as compared with antibody produced in 20 mM glucose-containing medium. A newly induced light chain glycoform produced in the N-acetylglucosamine-containing medium was shown to be responsible for this antigen binding enhancement. Addition of glucose in the N-acetylglucosamine-containing media led to decreased antibody affinity and slightly inhibited production of a new light chain in a dose-dependent manner. Combination of 20 mM N-acetylglucosamine and 0.5 mM glucose gave a higher antibody production without the decrease of the antigen binding. These results indicate that optimization of N-glycosylation on the light chain, which leads to higher antigen binding, can be accomplished by adjusting a ratio of glucose and N-acetylglucosamine in the culture medium. 相似文献
13.
Camperi SA Iannucci NB Albanesi GJ Oggero Eberhardt M Etcheverrigaray M Messeguer A Albericio F Cascone O 《Biotechnology letters》2003,25(18):1545-1548
The peptide, Ala-Pro-Ala-Arg (APAR), was selected from the screening of a tetrapeptide combinatorial synthetic library as the ligand for affinity purification of an anti-Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) monoclonal antibody (Mab) developed in mouse ascitis. The affinity chromatographic matrix obtained by attachment of APAR to agarose, having a peptide density of 0.5 mol ml–1, showed a maximum capacity of 9.1 mg Mab ml–1 and a dynamic capacity of 3.9 mg Mab ml–1. A 95% yield of electrophoretically pure anti-GM-CSF was obtained in a single step. 相似文献
14.
The potential of cationic polyelectrolytes to precipitate host cell and process related impurities was investigated, to replace one or more chromatography steps in monoclonal antibody purification. The impact of antibody isoelectric point, solution properties (pH and ionic strength), and polyelectrolyte properties (structure, molecular weight and pK(a)) on the degree of precipitation was studied. At neutral pH, increasing solution ionic strength impeded the ionic interaction between the polyelectrolyte and impurities, reducing impurity precipitation. Increasing polyelectrolyte molecular weight and pK(a) enabled precipitation of impurities at higher ionic strength. PoIy(arginine) was selected as the preferred polyelectrolyte in unconditioned cell culture fluid. PoIy(arginine) precipitation achieved consistent host cell protein clearance and antibody recovery for multiple antibodies across a wider range of polyelectrolyte concentrations. Poly(arginine) precipitation was evaluated as a flocculant and as a functional replacement for anion exchange chromatography in an antibody purification process. Upstream treatment of cell culture fluid with poly(arginine) resulted in flocculation of solids (cells and cell debris), and antibody recovery and impurity clearance (host cell proteins, DNA and insulin) comparable to the downstream anion exchange chromatography step. 相似文献
15.
Tilman Schlothauer Petra Rueger Jan Olaf Stracke Hubert Hertenberger Felix Fingas Lothar Kling Thomas Emrich Georg Drabner Stefan Seeber Johannes Auer Stefan Koch Apollon Papadimitriou 《MABS-AUSTIN》2013,5(4):576-586
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. 相似文献
16.
Failure of the usual anti-Ig antibody method for quantitative measurement of low affinity antibodies
The usual anti-Ig antibody method, consisting of the precipitation of soluble antigen-antibody complexes by heterologous anti-Ig antibody, was applied for quantitative estimation of guinea pig IgG2 anti-ovalbumin and anti-2,4-dinitrophenyl (DNP) antibodies by measuring the maximum amounts of antibody-bound antigens. However, the amounts of antibodies estimated were less than those obtained by other methods: the precipitin reaction, the precipitation of antigen-antibody complexes with 50% saturated ammonium sulfate, and equilibrium dialysis. In particular, the anti-Ig antibody method greatly underestimated the amount of anti-DNP antibody with low affinity for epsilon-DNP-L-lysine. Thus, it was concluded that partial dissociation of the antigen-antibody complexes occurring upon precipitation with anti-Ig antibody made the anti-Ig antibody method unsuitable for quantitative determination of antibodies. 相似文献
17.
YAN Xiyun TANG Jian WU Xiaoping WANG Fengcai LI Jiansheng YANG Dongling 《中国科学C辑(英文版)》2000,43(3):232-238
Using antibody phage display technique,a human single chain antibody to vascular endothelial growth factor (VEGF) has been cloned.The antibody expression reached 45% of the total bacterial proteins.The purification and refolding of the antibody were completed in one step by using gel filtration chromatograph.ELISA analysis showed that the antibody not only specifically bound to human VEGF,but also competitively inhibited VEGF reacting with its receptors.In order to raise the affinity of the single chain antibody,its heavy chain variable region was randomly mutated using error-prone PCR and an antibody mutant library was constructed,from which a mutant with higher affinity was screened out.The three-dimensional structure and binding affinity of wild type and mutant antibody were compared.Our study provided a potential reagent for tumor angiogenic therapy and a significant model for antibody high-level expression and affinity maturation. 相似文献
18.
Rathanaswami P Roalstad S Roskos L Su QJ Lackie S Babcook J 《Biochemical and biophysical research communications》2005,334(4):1004-1013
The high specificity and affinity of monoclonal antibodies make them attractive as therapeutic agents. In general, the affinities of antibodies reported to be high affinity are in the high picomolar to low nanomolar range and have been affinity matured in vitro. It has been proposed that there is an in vivo affinity ceiling at 100 pM and that B cells producing antibodies with affinities for antigen above the estimated ceiling would have no selective advantage in antigen-induced affinity maturation during normal immune responses. Using a transgenic mouse producing fully human antibodies, we have routinely generated antibodies with sub-nanomolar affinities, have frequently rescued antibodies with less than 10 pM affinity, and now describe the existence of an in vivo generated anti-hIL-8 antibody with a sub-picomolar equilibrium dissociation constant. This confirms the prediction that antibodies with affinities beyond the proposed affinity ceiling can be generated in vivo. We also describe the technical challenges of determining such high affinities. To further understand the importance of affinity for therapy, we have constructed a mathematical model to predict the relationship between the affinity of an antibody and its in vivo potency using IL-8 as a model antigen. 相似文献
19.
本研究构建了带有His标签的拟南芥(Arabidopsis thaliana)WUSCHEL基因原核表达载体pET-31b(+)-WUS-His(6),优化了大肠杆菌(Escherichia coli)诱导表达体系,将亲和层析纯化后的WUS融合蛋白,经尿素梯度透析复性溶解,免疫新西兰大白兔,成功制备了WUS蛋白多克隆抗体。通过琼脂糖免疫扩散检测确定了抗血清效价和特异性,并以斑点杂交和Western blotting检验其灵敏性。结果表明,成功构建的拟南芥WUS原核表达载体,在E.coli中以0.5mmol/L异丙基-β-D-硫代半乳糖苷(IPTG)28°C诱导表达10h后,融合蛋白得到高水平表达,亲和纯化后目标蛋白纯度达96%以上,所制备的多克隆抗体具有较高特异性和灵敏性,可用来检测纳克级蛋白抗原。 相似文献
20.
Telma Barroso Anita Lourenço Marco Araújo Vasco D. B. Bonifácio Ana C. A. Roque Ana Aguiar‐Ricardo 《Journal of molecular recognition : JMR》2013,26(12):662-671
This paper presents a sustainable strategy for improving the capture of antibodies by affinity chromatography. A novel biomimetic ligand (4‐((4‐chloro‐6‐(3‐hydroxyphenoxy)‐1,3,5‐triazin‐2‐yl)oxy)naphthalen‐1‐ol) (TPN‐BM) was synthesized using a greener and simple protocol to overcome solubility limitations associated with ligand 22/8, known as artificial protein A. Furthermore, its subsequent immobilization on chitosan‐based monoliths induced by plasma surface activation allowed the design of a fast and efficient chromatographic platform for immunoglobulin G (IgG) purification. The TPN‐BM functionalized monoliths exhibited high‐binding capacity (160 ± 10 mg IgG per gram of support), and a selective capture of monoclonal antibodies directly from mammalian crude extracts in 85 ± 5% yield and 98% of purity. The synthesis of ligand TPN‐BM and the routes followed for monoliths preparation and functionalization were inspired in the green chemistry principles allowing the reduction of processing time, solvents and purification steps involved, turning the integrated system attractive from an economical and chemical point of view. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献