首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lateral Root Initiation or the Birth of a New Meristem   总被引:9,自引:0,他引:9  
Root branching happens through the formation of new meristems out of a limited number of pericycle cells inside the parent root. As opposed to shoot branching, the study of lateral root formation has been complicated due to its internal nature, and a lot of questions remain unanswered. However, due to the availability of new molecular tools and more complete genomic data in the model species Arabidopsis, the probability to find new and crucial elements in the lateral root formation pathway has increased. Increasingly more data are supporting the idea that lateral root founder cells become specified in young root parts before differentiation is accomplished. Next, pericycle founder cells undergo anticlinal asymmetric, divisions followed by an organized cell division pattern resulting in the formation of a new organ. The whole process of cell cycle progression and stimulation of the molecular pathway towards lateral root initiation is triggered by the plant hormone auxin. In this review, we aim to give an overview on the developmental events taking place from the very early specification of founder cells in the pericycle until the first anticlinal divisions by combining the knowledge originating from classical physiology studies with new insights from genetic-molecular analyses. Based on the current knowledge derived from recent genetic and developmental studies, we propose here a hypothetical model for LRI.  相似文献   

2.
Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repres- sive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis.  相似文献   

3.
4.
促分裂原活化蛋白激酶(MAPK)信号级联通路是真核生物中高度保守的重要信号系统,通过激酶逐级磷酸化传递并放大上游信号,进而调控细胞反应。MAPK信号通路不仅介导植物响应环境变化,而且在调节植物生长发育过程中发挥重要作用。近期,山东大学丁兆军课题组研究发现,植物重要激素生长素能够通过激活MPK14调控下游ERF13的磷酸...  相似文献   

5.
生长素是调控植物侧根发育的关键植物激素,生长素运输载体PIN蛋白介导其极性分布。ABI4抑制生长素极性运输蛋白基因PIN1的表达,影响生长素的极性运输,抑制侧根形成。本文概述ABI4转录因子调控侧根发育的研究进展。  相似文献   

6.
7.
为探讨丛枝菌根真菌(AMF)、磷水平和生长素对植物侧根形成的影响,在两种磷水平下接种AMF(Rhizophagus irregularis BGC JX04B),施用IBA、生长素运输抑制剂(TIBA),观察AMF、磷水平和生长素对枳Poncirus trifoliata幼苗侧根形成的调控效应。结果表明,AMF对植株生物量及各级侧根数量无显著影响,但显著降低一级侧根长度;磷水平对植株生物量、侧根数量及长度无显著影响;TIBA显著降低植株生物量、侧根数量和侧根长度,而IBA对各项指标无显著影响。AMF和生长素对主根长度的影响存在显著互作;AMF、磷水平和生长素对二级和三级侧根数量的影响存在显著互作。因此,AMF对枳侧根形成的调控可能涉及生长素信号途径,而生长素运输是枳侧根形成的关键因素。  相似文献   

8.
9.
植物侧根发育的研究进展   总被引:2,自引:0,他引:2  
侧根是植物根系的重要组成部分,其发生和发育受到内源植物激素和外界环境因素的共同影响。生长素在侧根发生起始、侧根原基的发育和侧根突破母体表皮等阶段均发挥关键作用。研究侧根的发育和形态解剖结构以及信号调控途径等,都具有重要的理论和实践意义。本文结合近年来的研究进展,综述了拟南芥和水稻侧根发育的详细过程和影响因素,重点关注生长素在侧根原基发生和发育过程中的作用。  相似文献   

10.
Studying Arabidopsis thaliana (L.) Heynh. root development in situ at the whole plant level without affecting shoot development has always been a challenge. Such studies are usually carried out on individual plants, neglecting competition of a plant population, using hydroponic systems or Agar-filled Petri dishes. Those both systems, however, present some limitations, such as difficulty to study precisely root morphogenesis or time-limited culture period, respectively. In this paper, we present a method of Arabidopsis thaliana (L.) Heynh. cultivation in soil medium, named “Ara-rhizotron”. It allows the non-destructive study of shoot and root development simultaneously during the entire period of vegetative growth. In this system, roots are grown in 2D conditions, comparable to other soil cultures. Moreover, grouping several Ara-rhizotrons in a box enables the establishment of 3D shoot competition as for plants grown in a population. In comparison to a control culture grown in pots in the same environmental conditions, the Ara-rhizotron resulted in comparable shoot development in terms of dry mass, leaf area, number of leaves and nitrogen content. We used this new culture system to study the effect of irrigation modalities on plant development. We found that irrigation frequency only affected root partitioning in the soil and shoot nitrogen content, but not shoot or root growth. These effects appeared at the end of the vegetative growth period. This experiment highlights the opportunity offered by the Ara-rhizotron to point out tardy effects, affecting simultaneously shoot development and root architecture of plants grown in a population. We discuss its advantages in relation to root development and physiology, as well as its possible applications.  相似文献   

11.
The spacing of lateral root primordia in the primary root of Pisum sativum (cv. Alaska) seedlings is influenced by both predetermined lateral root initiation sites in the embryonic radicle and by factors present during seedling growth. When pea seeds were germinated in the presence of the mitotic inhibitor, colchicine, the triarch radicle produced three ranks of primordiomorphs indicating sites of embryonic lateral root primordia. The number of primordiomorphs was not the same along the three xylem strands in the radicle. Normally germinated seedling roots (5 days old) also showed a different number of lateral root primordia associated with the three strands. In both cases, the strand with the greatest number of primordia (or primordiomorphs) was associated with a cotyledonary trace. This indicated a possible role for the cotyledons in setting the pattern of lateral root distribution during radicle development. The spacing of lateral root primordia could be altered by the application of growth regulators. Seedling root tips (2 mm) were removed (? rt) and replaced with indoleacetic acid (+IAA), and in some instances seedlings were also treated with the auxin transport inhibitor, 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5, 1-α]isoindol-8-one (+DPX). In the growth regulator treatments, primary root elongation was inhibited, a greater number of lateral root primordia were initiated compared to controls, and the spacing intervals between primordia were greatly reduced. The — rt, +IAA, +DPX-treatment resulted in the closest possible spacing intervals (av. 0.4 ? 0.6 mm), but resulted in fused or fasciated laterals. The — rt, + IAA-treatment produced the shortest spacing intervals which resulted in “normal” lateral roots (0.8 ? 1.1 mm).  相似文献   

12.
We have identified a gene, Lateral Root Development 3 (LRD3), that is important for maintaining a balance between primary and lateral root growth. The lrd3 mutant has decreased primary root growth and increased lateral root growth. We determined that the LRD3 gene encodes a LIM-domain protein of unknown function. LRD3 is expressed only in the phloem companion cells, which suggested a role in phloem function. Indeed, while phloem loading and export from the shoot appear to be normal, delivery of phloem to the primary root tip is limited severely in young seedlings. Abnormalities in phloem morphology in these seedlings indicate that LRD3 is essential for correct early phloem development. There is a subsequent spontaneous recovery of normal phloem morphology, which is correlated tightly with increased phloem delivery and growth of the primary root. The LRD3 gene is one of very few genes described to affect phloem development, and the only one that is specific to early phloem development. Continuous growth on auxin also leads to recovery of phloem development and function in lrd3, which demonstrates that auxin plays a key role in early phloem development. The root system architecture and the pattern of phloem allocation in the lrd3 root system suggested that there may be regulated mechanisms for selectively supporting certain lateral roots when the primary root is compromised. Therefore, this study provides new insights into phloem-mediated resource allocation and its effects on plant root system architecture.  相似文献   

13.
Lateral root development in cultured seedlings of Pisum sativum (cv. Alaska) was modified by the application of auxin transport inhibitors or antagonists. When applied either to replace the root tip or beneath the cotyledonary node, two auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-α]isoindol-8-one (DPX-1840), increased cell division activity opposite the protoxylem poles. This resulted in the formation of masses of cells, which we are calling root primordial masses (RPMs), 2 to 3 days after treatment. RPMs differed from lateral root primordia in that they lacked apical organization. Some roots however developed both RPMs and lateral roots indicating that both structures were similar in terms of the timing and location of cell division in the pericycle and endodermis leading to their initiation. Removal of the auxin transport inhibitors allowed many of the RPMs to organize later into lateral root primordia and to emerge in clusters. When the auxin, indoleacetic acid (IAA) was added to the growth medium along with DPX-1840, 3 ranks of RPMs now in the form of fasciated lateral roots emerged from the primary root. The auxin antagonist, p-chlorophenoxy-isobutyric acid (PCIB), also induced RPM formation. In contrast to DPX-1840 treatment, the addition of IAA during PCIB treatment caused normal lateral root development.  相似文献   

14.
The vascular pattern in the root of barley (Hordeum vulgare L.), characterized by discontinuous xylem, is markedly affected by its branching. The roots become divided into unbranched segments alternating with branched segments with a more complex vascular pattern, formed by two systems differing in origin and age: the primary vascular system derived from the procambium and ontogenetically younger connective vascular system derived from stelar parenchyma. Adjacent to the sites of the lateral root initiation, reprogramming of parent stelar parenchyma for connective vascular elements occurs. The connecting phloem is represented by small sieve elements and companion cells, the connecting xylem is composed of small vessel elements with reticulate or scalariform-reticulate wall thickenings and simple perforations. Development of the connective vascular system secures continuous lateral and axial vascular connection between lateral root and parent root. The extent of the vascular connection in the parent root increases in an acropetal direction. Hydraulic effects of connective vascular tissue formation and parent root segmentation are discussed.  相似文献   

15.
在植物体内,细胞周期对于植物的萌发、生长、开花、结实等各个生长发育阶段具有重要作用。细胞周期正常运转需要依赖一些细胞周期蛋白,但是目前关于细胞周期蛋白调控根发育的分子机制还不清楚。通过筛选模式植物拟南芥的根发育异常突变体,分离鉴定了1个突变体dig9(drought inhibition of lateral root growth),该突变体表现为主根短、侧根少、发育迟缓、顶端分生组织变小、叶片扭曲、无主茎等表型。通过图位克隆,成功定位并克隆了DIG9基因,该基因编码一个细胞周期蛋白,是有丝分裂后期促进复合体的一个亚基APC8 (anaphase-promoting complex)。通过亚细胞定位发现DIG9定位于细胞核;qRT-PCR检测发现DIG9基因在根中有较高的表达量,进一步通过启动子-GUS报告系统发现DIG9在根尖、侧根和顶端分生组织等细胞分裂旺盛区域表达。外施IAA能恢复dig9突变体的侧根表型但不能恢复根短表型。dig9突变体对干旱及盐胁迫反应不敏感。研究结果表明DIG9基因可能通过影响IAA的产生来调控植物的侧根发育。  相似文献   

16.
Carbon Monoxide Promotes Lateral Root Formation in Rapeseed   总被引:3,自引:0,他引:3  
Carbon monoxide (CO), an odorless, tasteless and colorless gas, has recently proved to be an important bioactive or signal molecule in mammalian cells, with its effects mediated mainly by nitric oxide (NO). In the present report, we show that exogenous CO induces lateral root (LR) formation, an NO-dependent process. Administration of the CO donor hematin to rapeseed (Brassica napus L. Yangyou 6) seedlings for 3 days, dose-dependently promoted the total length and number of LRs. These responses were also seen following the application of gaseous CO aqueous solutions of different saturated concentrations. Furthermore, the actions of CO on seedlings were fully reversed when the CO scavenger hemoglobin (Hb)or the CO-specific synthetic inhibitor zinc protoporphyrin-Ⅸ (ZnPPIX) were added. Interestingly, depletion of endogenous NO using its specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)or the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME), led to the complete abolition of LR development, illustrating an important role for endogenous NO in the action of CO on LR formation. However, the or absence of ZnPPIX. Furthermore, using an anatomical approach combined with laser scanning confocal microscopy with the NO-specific fluorophore 4,5-diaminofluorescein diacetate, we observed that both hematin and SNP increased NO release compared with control samples and that the NO signal was mainly distributed in the LR primordia (LRP), especially after 36 h treatment. The LRP were found to have similar morphology in control, SNP- and hematin-treated seedlings.Similarly, the enhancement of the NO signal by CO at 36 h was differentially quenched by the addition of cPTIO, L-NAME,ZnPPIX and Hb. In contrast, the induction of NO caused by SNP was not affected by the application of ZnPPIX. Therefore,we further deduced that CO induces LR formation probably mediated by the NO/NOS pathway and NO may act downstream of CO signaling, which has also been shown to occur in animals.  相似文献   

17.
Carbon Monoxide Promotes Lateral Root Formation in Rapeseed   总被引:1,自引:0,他引:1  
Carbon monoxide (CO), an odorless, tasteless and colorless gas, has recently proved to be an important bioactive or signalmolecule in mammalian cells, with its effects mediated mainly by nitric oxide (NO). In the present report, we show thatexogenous CO induces lateral root (LR) formation, an NO-dependent process. Administration of the CO donor hematin torapeseed (Brassica napus L. Yangyou 6) seedlings for 3 days, dose-dependently promoted the total length and number ofLRs. These responses were also seen following the application of gaseous CO aqueous solutions of different saturatedconcentrations. Furthermore, the actions of CO on seedlings were fully reversed when the CO scavenger hemoglobin (Hb)or the CO-specific synthetic inhibitor zinc protoporphyrin-IX (ZnPPIX) were added. Interestingly, depletion of endogenousNO using its specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)or the nitric oxide synthase (NOS) inhibitor N~G-nitro-L-arginine methyl ester (L-NAME),led to the complete abolition ofLR development, illustrating an important role for endogenous NO in the action of CO on LR formation. However, theinduction of LR development by 200 umol/L sodium nitroprusside (SNP),an NO donor, was not affected by the presenceor absence of ZnPPIX. Furthermore, using an anatomical approach combined with laser scanning confocal microscopywith the NO-specific fluorophore 4,5-diaminofluorescein diacetate, we observed that both hematin and SNP increased NOrelease compared with control samples and that the NO signal was mainly distributed in the LR primordia (LRP), especiallyafter 36 h treatment. The LRP were found to have similar morphology in control, SNP-and hematin-treated seedlings.Similarly, the enhancement of the NO signal by CO at 36 h was differentially quenched by the addition of cPTIO, L-NAME,ZnPPIX and Hb. In contrast, the induction of NO caused by SNP was not affected by the application of ZnPPIX. Therefore,we further deduced that CO induces LR formation probably mediated by the NO/NOS pathway and NO may act downstreamof CO signaling, which has also been shown to occur in animals.  相似文献   

18.
19.
《Current biology : CB》2020,30(3):455-464.e7
  1. Download : Download high-res image (86KB)
  2. Download : Download full-size image
  相似文献   

20.
Morphological analysis of flowers was carried out in Arabidopsis thaliana wild type plants and agamous and apetala2 mutants. No direct substitution of organs takes place in the mutants, since the number and position of organs in them do not correspond to the structure of wild type flower. In order to explain these data, a notion of spatial pattern formation in the meristem was introduced, which preceded the processes of appearance of organ primordia and formation of organs. Zones of acropetal and basipetal spatial pattern formation in the flower of wild type plants were postulated. It was shown that the acropetal spatial pattern formation alone took place in agamous mutants and basipetal spatial pattern formation alone, in apetala2 mutants. Different variants of flower structure are interpreted as a result of changes in the volume of meristem (space) and order of spatial pattern formation (time).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号