首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-composting of pig manure with sawdust was studied in order to characterize the organic transformation during the process, using both chemical and spectroscopic methods. Humic acids (HA) and fulvic acids (FA) were fractionated from immature and mature pig manure compost, and characterized. After 63 days of composting, the ratio of total organic carbon and soluble organic carbon decreased to a satisfactory low level and the solid and soluble C/N ratios decreased rapidly for the first 35 days before attaining a constant value, indicating compost maturity. Humification could be responsible for the increase in humic acid proportion during composting. The increase in the aromatic bonds after composting, as indicated by the reduction of C/H and C/O ratios of HA and FA, resulted in a more stabilized product. A substantial increase in high molecular weight compounds along with a small increase in low molecular weight compounds was found in mature compost. Moreover the HA also had more complex organic compounds at this stage. Fluorescence spectral analysis showed an increase in the maximum wavelength of HA associated with the contents of aromatic structures in solution. A decrease in relative absorbance of HA at 1160 cm(-1), 2950 cm(-1) and 2850 cm(-1) was seen in the FTIR spectra indicating the decomposition of complex organic constituents, into simpler ones. Increase in the aromatic compounds with higher stability could account for the relative increase in the absorbance of HA at 1650 cm(-1) and 1250 cm(-1) of the mature compost. The composition of FA was not much altered, indicating most of the degradation of organic matter occurred in HA. Data from organic carbon, C/N ratio, elemental analysis, E(4)/E(6) ratio, gel chromatography, fluorescence and FTIR spectra indicated an increase in polycondensed structures and the presence of more stable organic matter in the mature compost.  相似文献   

2.
Sludge resulting from the treatment of effluent from a vegetable oil mill, was composted mixed with domestic waste in a pile for five months. Different proportions of sludge and dry waste were mixed: M1 (1v/2v) and M2 (1v/1v). Monitoring different physical-chemical parameters showed the effect of the substrate on the microbiological activity and on the formation of fulvic acids, affecting the maturity of the final compost. Elemental analysis revealed that the fulvic acids of mixes M1 and M2 presented very low concentrations of carbon, hydrogen, and oxygen and a high level of nitrogen. The FTIR spectroscopy results showed a decrease during composting of the intensity of absorbance of the easily assimilable compounds that are predominant in the initial mixtures i.e. the carbohydrates (1170-1080 cm(-1)) in M1 and long aliphatic chains (2920 cm(-1)) in M2. For mix M1 there was enrichment in compounds bearing oxygen-containing moieties. In M2 it was the nitrogen-containing compounds (in the form of stable amides) which predominated at the end of composting. The first component of PCA analysis, PC1, accounted for 83% of the difference between two distinct groups of parameters governing degradation and restructuration of the fulvic acids during composting. PC2 (17%) explained the variance due to the level of free or less polycondensed compounds in the two mixtures. Oxidised polyphenolic and polysaccharide structures were the least free, or most polycondensed, in the fulvic structures of M1. In M2 fulvic acids however, it was the polyphenols and peptide structures that were involved in the bonding, most likely of the polyphenol-peptide type.  相似文献   

3.
The photochemistry of alkyl phenylglyoxylates (APG) was further investigated using time-resolved infrared spectroscopy. The primary focus was on the analysis of weak transient bands around 1828 and 1730 cm(-1) in the time-resolved FTIR spectra of glyoxylates. The observed transients were assigned to benzoyl and alkyl mandelate ester radicals, respectively. The formation of benzoyl radical was fast and attributed to the Norrish Type I process. In addition, the intensities of the strong FTIR bands around 1680 and 2100 cm(-1) were used to analyze the yields of the triplet state and ketene, respectively. These new and previous data on APG photochemistry are discussed in relation to the acrylate polymerization photoinitiation by alkyl phenylglyoxylates.  相似文献   

4.
Structural changes in humic acids (HAs), extracted after lipid removal from sewage sludge during composting, were investigated using various chemical methods (elemental analysis, Fourier transform infrared spectroscopy and 13C-nuclear magnetic resonance (NMR) spectroscopy). Compared to non-purified HAs, lipid-free HAs (LFHAs) exhibit higher C and N contents and high absorbance around 1652, 1540 and 1230 cm−1, which indicates the intensity of the etherified aromatic structures and nitrogen-containing components. Less absorbance around 2920, 1600, 1414 and 1100 cm−1 could be assigned to their low level of aliphatic compounds, mainly those with a carboxyl group. According to 13C-NMR spectroscopy, almost 45% of aliphatic structures are removed by lipid extraction and these correspond mainly to long-chain fatty acids. During composting, significant decomposition of non-substituted alkyl structures and N-containing components occurred, increasing the relative intensity of etherified aromatic structures.  相似文献   

5.
The elemental composition and spectroscopic properties of dissolved fulvic acids isolated from different sampling media (topsoil, ground and surface water) of a natural fen area (high portion of organic soils) were examined to reveal the effects of land use history. These effects need to be known if dissolved humic substances are to be a major factor in identifying the impact of present and future changes in land use. Dissolved fulvic acids (topsoil, groundwater) from highly degraded peatlands (due to a long-term agricultural use) exhibit lower C/N ratios, higher absorption in the UV spectra, and higher absorption at 1,620 cm–1 in the FTIR spectra compared with fulvic acids from relatively intact peatlands. These properties illustrate that long-term agricultural use with high inputs results in increased aromatic structures and a further humification of dissolved fulvic acids due to very strong peat decomposition compared with relatively intact peatlands. Synchronous fluorescence spectra also indicate the higher level of aromatic structures within fulvic acids isolated from sites with long-term agricultural use (high peat decomposition) compared with a land use history resulting in a lower peat decomposition. The different sources of fulvic acids in surface water (precipitation, runoff, interflow, groundwater) are the main reason for these effects not being detected in fulvic acids isolated from surface water. Short-term changes in land use characterized by a transition from crop farming to an unimproved grassland were found not to affect the spectroscopic properties of dissolved fulvic acids. A humification index deduced from the synchronous fluorescence spectra is proposed. We have strong evidence that dissolved humic substances indicate changes in the environmental conditions (both anthropogenic and natural) of wetlands with a high proportion of organic soils.  相似文献   

6.
New fluorescent iodobiphenyl ethers bearing para-alkyloxy functional groups of diverse alkyl tail lengths were synthesized. The synthesis process was simply accomplished via an alkali-assisted reaction of aliphatic alcohols with hydroxyl-substituted iodobiphenyls. The molecular structures of the prepared iodobiphenyl ethers were determined using Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and nuclear magnetic resonance (NMR) spectroscopy. Both absorption and fluorescence spectra proved solvatochromic activity. The synthesized alkyloxy-substituted iodobiphenyl analogues were tested for antioxidant effectiveness using 2,2-diphenyl-1-picrylhydrazyl (DPPH) methodology. The antioxidant outcomes demonstrated that the longest hydrocarbon chain-containing substituted iodobiphenyl analogues had a high efficacy with over an IC50 = 21.26 ± 0.36 μg/ml. Alkyloxy-substituted iodobiphenyl analogues also underwent docking operations over the 5IKQ protein.  相似文献   

7.
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a(3) moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba(3)-oxidase from Thermus thermophilus, determined at ~2.8-3.2? resolution, reveal a Fe-C distance of ~2.0?, a Cu-O distance of 2.4? and a Fe-C-O angle of ~126°. Upon photodissociation at 100K, X-ray structures indicate loss of Fe(a3)-CO and appearance of Cu(B)-CO having a Cu-C distance of ~1.9? and an O-Fe distance of ~2.3?. Absolute FTIR spectra recorded from single crystals of reduced ba(3)-CO that had not been exposed to X-ray radiation, showed several peaks around 1975cm(-1); after photolysis at 100K, the absolute FTIR spectra also showed a significant peak at 2050cm(-1). Analysis of the 'light' minus 'dark' difference spectra showed four very sharp CO stretching bands at 1970cm(-1), 1977cm(-1), 1981cm(-1), and 1985cm(-1), previously assigned to the Fe(a3)-CO complex, and a significantly broader CO stretching band centered at ~2050cm(-1), previously assigned to the CO stretching frequency of Cu(B) bound CO. As expected for light propagating along the tetragonal axis of the P4(3)2(1)2 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba(3) crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO(2) at 2337cm(-1) and one from traces of CO at 2133cm(-1); while bands associated with CO bound to either Fe(a3) or to Cu(B) in "light" minus "dark" FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2? and FTIR spectra support the long-held position that photolysis of Fe(a3)-CO in cytochrome c oxidases leads to significant trapping of the CO on the Cu(B) atom; Fe(a3) and Cu(B) ligation, at the resolutions reported here, are otherwise unaltered.  相似文献   

8.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   

9.
The degradation of organic matter was evaluated by a quantitative Fourier transform infrared spectroscopy (FTIR) analysis technique. The degradation process was conducted in a bench-scale reactor under controlled operational conditions of 50 degrees C, with 50-60% moisture content, and subjected to uniform aeration for 325 h. During the composting process, ATP concentration increased from 0.1 to 8 mug/g and the maximum CO(2) evolution and O(2) consumption rates reached 0.04 and 0.085 mmol/g-h, respectively. Polysaccharide content decreased approximately 50% while lignin content remained unchanged. Three regions of the FTIR spectra were used for quantification: 1070-974, 1705-1614, and 2995-2887 cm(-1), which correspond to polysaccharides and aromatic and aliphatic compounds, respectively. The actual spectra quantification consisted of peak identification using a second derivative and curve fitting technique, followed by normalization using the internal standard CaCO(3). The results obtained with the spectra quantification technique was then compared to commonly used wet chemistry extraction procedures. Reasonable correlation between the two techniques was obtained. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Noguchi T  Sugiura M 《Biochemistry》2002,41(52):15706-15712
Photosynthetic water oxidation is performed via the light-driven S-state cycle in the water-oxidizing complex (WOC) of photosystem II (PS II). To understand its molecular mechanism, monitoring the reaction of substrate water in each S-state transition is essential. We have for the first time detected the reactions of water molecules in WOC throughout the S-state cycle by observing the OH vibrations of water using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Moderately hydrated (or deuterated) PS II core films from Synechococcus elongatus were used to obtain the FTIR difference spectra upon the first, second, third, and fourth flash illumination, representing the structural changes in the S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1) transitions, respectively. In the weakly H-bonded OH region, bands appeared at 3617/3588 cm(-1) as a differential signal in the first-flash spectrum and at 3634, 3621, and 3612 cm(-1) with negative intensities in the second-, third-, and fourth-flash spectra, respectively. These bands shifted down by approximately 940 cm(-1) upon deuteration and by approximately 10 cm(-1) upon H(18)O substitution, indicating that they arise from the OH stretches of water including the substrate and its intermediates. Strongly D-bonded OD bands of water were also identified as broad features in the range of 2600-2200 cm(-1) by taking the double difference between the spectra of D(2)(16)O- and D(2)(18)O-deuterated films. In addition, broad continuum features that probably arise from the large proton polarizability of H-bonds were observed around 3000, 2700, 2550, and 2600 cm(-1) in the first-, second-, third-, and fourth-flash spectra, respectively, of the hydrated PS II film, revealing changes in the H-bond network of the protein. The negative OH intensities upon the second to fourth flashes might be related to proton release from substrate water. The results presented here showed that FTIR detection of water OH(D) bands can be a powerful method for investigating the mechanism of photosynthetic water oxidation.  相似文献   

11.
Triesterified phospholipid model compounds have been synthesized and extensively studied with 300-MHz 1H NMR in the monomer phase in order to get additional support for the effect of conformational transmission induced by a P(4-coord) into a trigonal bipyramidal P(5-coord) transition, as was suggested by Merkelbach and Buck. To elucidate any conformational preferences around the C2-C3 bond, the stereospecifically deuterated precursor 1,2-dihexanoyl-(3R)-sn-[3-2H]glycerol was synthesized. The results reveal that a coordinational change of phosphorus from four to five is transmitted in a significant increase in population of the conformer, in which the vicinally substituted oxygens O-2 and O-3 are trans located. The impact of this transmission seems not to be restricted to conformational changes in the adjacent C2-C3 bond, but is also present in specific rotations around the C1-C2 bond, thereby shifting the C1-C2 conformational equilibrium towards a decreased contribution of the trans arrangement of the acyl chains. As a consequence the interchain distance will be reduced and thus van der Waals interactions will be maximized. The results are interpreted in terms of increased electron density on O-3 when axially located in a P(5-coord) trigonal bipyramidal compound, thereby introducing enhanced electrostatic repulsions within the oxygen pairs O-3, O-2 and O-3, O-1. Relaxation of this energetically unfavourable geometry leads to the observed conformational shifts. Absence of conformational transmission, as found in P(5-coord) trigonal bipyramidal compounds with the 2-ester group substituted for an alkyl moiety, can be considered as additional support for the introduced concept. In the alkyl part of the model phospholipids, however, no conformational changes were observed by means of 13C NMR. Extrapolating this outcome to more condensed phases, a proposition could be made about the mechanism by which conformational changes in the head-group and/or glyceryl backbone will be compensated.  相似文献   

12.
The FTIR spectra were measured for raw Uplands Sicala-V2 cotton fibers over a temperature range of 40-325 degrees C to explore the temperature-dependent changes in the hydrogen bonds of cellulose. These cotton-cellulose spectra exhibited complicated patterns in the 3800-2800 cm(-1) region and thus were analyzed by both the exploratory principal component analysis (PCA) and two-dimensional (2-D) correlation spectroscopy methods. The exploratory PCA showed that the spectra separate into two groups on the basis of thermal degradation of the cotton-cellulose and the consequent breakage of intersheet H-bonds present in its structure. Frequency variables, which strongly contributed to each principal component highlighted in its loadings plot, were linked to the frequencies assigned to vibrations of the OH groups involved in different kinds of H-bonds, as well as to vibrations of the CH groups. Deeper insights into reorganization of the temperature-dependent hydrogen bonding were obtained by 2-D correlation spectroscopy. Synchronous and asynchronous spectra were analyzed in the temperature ranges of 40 to 150 and 250 to 320 degrees C, the ranges indicated by PCA. Detailed band assignments of the OH stretching region and changes in the patterns of the hydrogen bonding network of the cotton-cellulose were proposed with the aid of the 2-D correlation spectroscopy analysis. Below 150 degrees C, distinctly different bands assigned to the less stable Ialpha and the more stable Ibeta interchain H-bonds O-6-H-6...O-3' were observed at about 3230 and 3270 cm(-1), respectively. Evaporation of water entrapped in the cellulose network was examined by means of the band at about 3610 cm(-1). The cooperativity of hydrogen bonds, which play a key role in the cellulose conformation, was monitored by frequencies assigned to intrachain H-bonds. It was possible to separate the frequencies assigned to the O-2-H-2...O-6 and O-3-H-3...O-5 intrachain H-bonds into two separate ranges, the spread of which was controlled by the cooperativity effect. The temperature dependence of the asynchronous spectra indicated that the less stable O-3-H-3...O-5 bonds gave rise to an absorption extending from 3300 to 3384 cm(-1), while the more stable O-2-H-2...O-6 bonds were characterized by the absorption between 3400 and 3470 cm(-1). The final breaking of the inter- and intrachain H-bonds, which occurs at the higher temperatures, was monitored by the asynchronous peaks at 3533 and 3590 cm(-1), respectively. On the basis of both the exploratory PCA and 2-D correlation spectroscopy investigations, it was possible to extract well-defined wavenumber ranges assigned to different kinds of intra- and interchain hydrogen bonds, as well as to the free OH groups of the cotton-cellulose.  相似文献   

13.
Hu Z  Liu Y  Chen G  Gui X  Chen T  Zhan X 《Bioresource technology》2011,102(15):7329-7334
The objective of this study was to investigate humification and mineralization of manure-straw mixtures contaminated by tetracyclines during composting. Hen manure, pig manure and rice straw were used as the raw materials. The manure-straw mixtures were spiked with tetracycline, chlortetracycline, and oxytetracycline at the concentration of 60 mg/kg dry matter. The results show that tetracyclines had no obvious influence on the composting process and more than 93% of the tetracyclines was decreased during a 45-day composting. The Fourier transform infrared (FTIR) spectra indicated that easily biodegradable components such as aliphatic substrates, carbohydrates and polysaccharides were decomposed and the contents of aromatic components relatively rose during the composting. The X-ray diffraction (XRD) spectra confirmed the natural formation of struvite, the degradation of easily biodegradable components, and the mineralization of organic matter during the composting. Therefore, FTIR and XRD analysis can be useful tools for monitoring the composting process.  相似文献   

14.
To reveal the influencing mechanism of dissolved organic matter (DOM) on mercury (Hg II) adsorption by black, red, and fluvo-aquic soils in China, Fourier transform infrared (FTIR) spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, and three-dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy were employed to characterize the DOM samples and DOM-Hg complexes. FTIR spectra showed that the complexation of Hg (II) mainly acted on the C=O, COO?, and O-H groups of DOM from swine manure (DOMs) and wheat straw (DOMw). The NMR spectra indicated that the complex reaction of Hg (II) and DOM corresponded with the change in carboxyl C. The NMR results also showed that the dominant C components in DOM were aromatic C, O-alkyl C, alkyl C, and carboxyl C, and that DOMw imposed more influence on Hg (II) adsorption than DOMs, which was consistent with that of FTIR spectroscopy. The 3DEEM showed that DOM contained both aromatic protein-like and fulvic-like substances, and that the protein-like properties of DOMs and UV fulvic-like fluorescence substances of DOMw can better participate in the formation of Hg complexes. This result provides strong direct evidence to elucidate the DOM-Hg (II) binding mechanism, and further interprets the effect mechanism of exogenous DOM on Hg adsorption by soil.  相似文献   

15.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

16.
Sludge from a sewage treatment plant dealing with the effluent produced during the processing of crude vegetable oil (Lesieur-Cristal, Morocco) was composted in two mixtures (M1 and M2) with household waste obtained from landfill. The different physico-chemical characteristics of the final composts after 5 months of composting were, for M1 and M2, respectively: pH: 8.5 and 7.08; C/N: 10 and 16; proportion of decomposition: 78% and 55%, NH(4)(+)/NO(3)(-): 0.78 and 1.02. Monitoring the levels of lipid and total polyphenols showed a reduction of 81% and 72% for lipids and of 75% and 76% for polyphenols in M1 and M2, respectively. These reductions were paralleled by a rise in the humic acid content to reach 22 and 36mg/g, respectively. Overall, these results were confirmed by the FTIR spectroscopy study of the two mixtures. For M1, the FTIR spectra taken at different stages showed that during composting, biodegradation of the aliphatic compounds occurred as the proportion of aromatic structures increased. The transformations observed qualitatively were then confirmed quantitatively by the changes occurring in the various absorption ratios during composting. Mixture M2, however, presented strong absorbance of aliphatic compounds. These results were statistically confirmed by correlation tests and principal components analysis, which confirmed the maturity of the two composts, M1 having matured more than M2.  相似文献   

17.
Summary Infrared and proton resonance spectra have been used to characterize fraction extracted sequentially from humic and fulvic acids by diethylether, acetone, dioxane, tetrahydrofuran, pyridine and dimethylformamide. The results showed that the same solvents extracted structurally similar components from both humic and fulvic acids. On the other hand, the spectra showed solvent-dependent differences, some being characteristic for a preponderance of aliphatic structures, others for aromatic structures.  相似文献   

18.
Fourier transform infrared (FTIR) and CD spectroscopy have been used to investigate the structural effects of G-tract length and flanking sequence on the conformation of DNA G-tracts in aqueous solution. Particularly, a possible predisposition for A-form features has been probed, since this may be important for protein-DNA interactions. Five different G-tract-containing DNA duplexes have been studied: d[CATGGCCATG](2), d[CATGGGCCCATG](2), d[CATGGGGCCCCATG](2,) d[AGGGGCCCCT](2), and d[TGGGGCCCCA](2). In addition, a DNA duplex lacking a G-tract center was probed (d[CATATGCATATG](2)). The CD and FTIR results show that the G-tract-containing sequences are all in a dominating B-DNA conformation in solution. However, certain spectral variations reflect structural effects of sequence context and G-tract length. CD spectra and FTIR results in the 1800-1500 cm(-1) region show that the base-stacking pattern is greatly affected by the sequence context. The FTIR backbone 1250-1000 cm(-1) region shows the antisymmetric non-bridging phosphate vibration around 1225 cm(-1) in all sequences, demonstrating the overall B-conformation of the backbone. The FTIR sugar 900-800 cm(-1) region shows variable contributions of two bands around 865 cm(-1) and 840 cm(-1), reflecting the N and S-type of sugar pucker. The relative intensities of the 865 cm(-1) and 840 cm(-1) bands have been proposed in the literature to quantitatively yield the contribution of N and S-type of sugar pucker, respectively. This correlation is supported by the present study. Furthermore, the contributions of N-type sugar in the DNA sequences studied indicate structural propensities that agree with trends in reported crystal structures of the same sequences: (1) d[CATGGCCATG](2), for which FTIR shows the lowest contribution of N-type sugar puckering in solution, crystallizes in a B-like conformation; (2) d[AGGGGCCCCT](2), with the highest degree of N-type sugar puckering of all the sequences studied, crystallizes in an A-like conformation; (3) d[CATGGGCCCATG](2), with an N-type contribution intermediate between that of d[CATGGCCATG](2) and d[AGGGGCCCCT](2), crystallizes in an A/B intermediate conformation.  相似文献   

19.
The applicability of the FTIR attenuated total reflectance technique for in situ monitoring of plant physiological processes such as leaf senescence and aging has been examined. Difference spectra obtained by subtracting the spectrum of the young plant leaf from that of the older one revealed positive bands at 1650-1500 cm(-1), indicating a higher relative concentration of phenolics in the older leaves of both black cherry and sweet pepper bush leaves. Prolonged physiological stress of tobacco leaves exhibited a progressive time-dependent increase of the absorbance at around 3475 cm(-1), corresponding to hydroxyl functional groups. Absorption changes were also observed between 1650 and 1500 cm(-1), which are likely to correspond to phenolics. The characteristic changes of the FTIR absorbance spectra resulting from physiological and induced aging were detected also as a response to treatment with a recombinant alpha-elicitin, cinnamomin. This allowed the first quantification of the biological activity of a recombinant elicitin using a spectroscopic method. We suggest that FTIR spectroscopy provides important information about physiological events occurring in plant tissue in vivo, and it could be useful for the in situ characterization of the plant responsiveness to fungal toxins such as elicitins.  相似文献   

20.
Ye M  Zhang QL  Li H  Weng YX  Wang WC  Qiu XG 《Biophysical journal》2007,93(8):2756-2766
The infrared (IR) absorption of the amide I band for the loop structure may overlap with that of the alpha-helices, which can lead to the misassignment of the protein secondary structures. A resolution-enhanced Fourier transform infrared (FTIR) spectroscopic method and temperature-jump (T-jump) time-resolved IR absorbance difference spectra were used to identify one specific loop absorption from the helical IR absorption bands of horse heart cytochrome c in D2O at a pD around 7.0. This small loop consists of residues 70-85 with Met-80 binding to the heme Fe(III). The FTIR spectra in amide I' region indicate that the loop and the helical absorption bands overlap at 1653 cm(-1) at room temperature. Thermal titration of the amide I' intensity at 1653 cm(-1) reveals that a transition in loop structural change occurs at lower temperature (Tm=45 degrees C), well before the global unfolding of the secondary structure (Tm approximately 82 degrees C). This loop structural change is assigned as being triggered by the Met-80 deligation from the heme Fe(III). T-jump time-resolved IR absorbance difference spectra reveal that a T-jump from 25 degrees C to 35 degrees C breaks the Fe-S bond between the Met-80 and the iron reversibly, which leads to a loop (1653 cm(-1), overlap with the helical absorption) to random coil (1645 cm(-1)) transition. The observed unfolding rate constant interpreted as the intrachain diffusion rate for this 16 residue loop was approximately 3.6x10(6) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号