共查询到20条相似文献,搜索用时 15 毫秒
1.
Egg yolk phosphatidylcholine liposomes were rapidly oxidized in the presence of chelated iron and a superoxide-generating system. alpha-Tocopherol incorporated in the bilayer was oxidized at the same time. No lipid or alpha-tocopherol oxidation occurred in liposomes composed of dimyristoyl phosphatidylcholine. The antioxidant did not inhibit lipid peroxidation until its concentration reached a critical level, which depended on the effectiveness of the oxidative stress. Beyond this level, peroxidation was inhibited completely and, simultaneously, the rate of oxidation of tocopherol was lowered. The results suggest that the antioxidant efficiency of alpha-tocopherol depends on its ability to react mainly with the chain-initiating or chain-propagating lipid radicals. This, in turn, is closely tied to the tocopherol content of the membrane. Ascorbate inhibited the consumption of alpha-tocopherol, possibly by regenerating its reduced form. 相似文献
2.
Endomorphin 1 (EM1), an endogenous µ‐opioid receptor agonist, acts as a free radical scavenger in vitro and an antioxidant in vivo. The modification of EM1 by ROS and the properties of the OM attracted our attention. In vitro assays were performed via RP‐HPLC, spectrophotometric measurements, EPR and amino acid analysis, Schmorl's reaction to define the formation of melanin‐like compounds transformed from EM1, collectively named EM1–melanin and by solubility assay, radioligand‐binding assay, NADH oxidation, superoxide anion scavenging assay to study some physical and chemical properties of EM1–melanin. Possible pathways of the formation of EM1–melanin were proposed. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
3.
Andrade RG Dalvi LT Silva JM Lopes GK Alonso A Hermes-Lima M 《Archives of biochemistry and biophysics》2005,437(1):1-9
Tannic acid (TA) has well-described antimutagenic and antioxidant activities. The antioxidant activity of TA has been previously attributed to its capacity to form a complex with iron ions, interfering with the Fenton reaction [Biochim. Biophys. Acta 1472, 1999, 142]. In this work, we observed that TA inhibits, in the micromolar range, in vitro Cu(II) plus ascorbate-mediated hydroxyl radical (*OH) formation (determined as 2-deoxyribose degradation) and oxygen uptake, as well as copper-mediated ascorbate oxidation and ascorbate radical formation (quantified in EPR studies). The effect of TA against 2-deoxyribose degradation was three orders of magnitude higher than classic *OH scavengers, but was similar to several other metal chelators. Moreover, the inhibitory effectiveness of TA, by the four techniques used herein, was inversely proportional to the Cu(II) concentration in the media. These results and the observation of copper-induced changes in the UV spectra of TA are indications that the antioxidant activity of TA relates to its copper chelating ability. Thus, copper ions complexed to TA are less capable of inducing ascorbate oxidation, inhibiting the sequence of reactions that lead to 2-deoxyribose degradation. On the other hand, the efficiency of TA against 2-deoxyribose degradation declined considerably with increasing concentrations of the *OH detector molecule, 2-deoxyribose, suggesting that the copper-TA complex also possesses an *OH trapping activity. 相似文献
4.
5.
Previous experiments on alloxan diabetogenicity suggest that alloxan increases the permeability of B-cell plasma membranes by generation of noxious free radicals. Whether the radicals are generated intra- or extracellularly has however been disputed. To test if extracellularly generated free radicals could decrease trypan blue exclusion of dispersed islet cells, a radical-generating solution of xanthine oxidase/hypoxanthine was employed. The solution increased dye uptake by cells in the cell suspension. Superoxide dismutase and catalase but not scavengers of hydroxyl radicals protected against the increase in dye uptake. Both L- and D-glucose protected the cells from injury. It is concluded that extracellularly generated free radicals induce damage to the plasma membrane of islet cells. The result strengthens the hypothesis of plasma membrane damage by extracellularly generated free radicals as the primary event in alloxan diabetogenicity and may provide a link for explanation of damage caused by islet inflammation in juvenile diabetes. 相似文献
6.
Vanillin as an antioxidant in rat liver mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization 总被引:1,自引:0,他引:1
Using rat liver mitochondria, as model systems, we have examined the ability of the natural compound and the food-flavoring agent, vanillin to protect membranes against oxidative damage induced by photosensitization at concentrations normally used in food preparations. Vanillin, at a concentration of 2.5 mmol/L, has afforded significant protection against protein oxidation and lipid peroxidation in hepatic mitochondria induced by photosensitization with methylene blue plus light. The effect observed was both time- and concentration-dependent. The inhibitory effect is similar to ascorbic acid and the singlet oxygen quencher, diazabicyclo[2.2.2]octane (DABCO) but less effective than sodium azide and glutathione. Examination of possible mechanisms responsible for the observed protection, showed that vanillin has a significant ability to quench singlet oxygen (1O2), a reactive species responsible for damage induced during photosensitization by Type II mechanism. Hence, this flavoring compound, due to its antioxidant ability, may have potential to prevent oxidative damage to membranes in mammalian tissues and thereby the ensuing diseased states. 相似文献
7.
8.
C P Verdon J B Blumberg 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1988,189(1):52-60
The effect of dietary vitamin E on the intermembrane transfer of (3R)-alpha-tocopherol, a spontaneous process accelerated in the presence of an alpha-tocopherol binding protein (alpha TBP), was examined. The transfer activity of this cytosolic liver protein was assayed via in vitro transfer of (3R)-alpha-[3H]tocopherol (alpha[3H]T) from egg lecithin liposomes to human erythrocyte ghosts (EG). Male Fisher 344 rats (1 and 20 months old) were fed diets containing 0, 30, and 500 mg/kg vitamin E (dl-alpha-tocopheryl acetate) for 15 weeks. Liver cytosol fractions were assayed for alpha[3H]T transfer activity (alpha TTA). Among young rats, those fed vitamin E-deficient diets had the highest alpha TTA, 5.02 +/- 3.10 pmole alpha[3H]T/min (mean +/- SD), which was different (P less than 0.05) from the spontaneous transfer rate of 2.10 pmole/min. Neither young rats fed 30 and 500 mg/kg vitamin E diets nor any of the aged rats showed alpha TTA which differed significantly from the spontaneous transfer rate. To examine the relationship between hepatic alpha-tocopherol levels and alpha TTA, alpha-tocopherol concentration per gram of wet liver was assayed by HPLC. A steep positive slope (6.39 +/- 1.46 pmole min-1 nmole g-1) and strong correlation (r = 0.873) between hepatic alpha-tocopherol and alpha TTA were observed (P less than 0.005) among young vitamin E-deficient rats. The data indicates that alpha TTA varies directly with hepatic alpha-tocopherol concentration when total liver vitamin E stores are very low. Thus, alpha TBP-mediated transfer of alpha-tocopherol may be manifest only when vitamin E status is compromised. 相似文献
9.
Jitka Frébortová Ondřej Novák Ivo Frébort Radek Jorda 《The Plant journal : for cell and molecular biology》2010,61(3):467-481
Hydroxamic acid 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4‐nitrosoresorcinol‐1‐monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX‐catalyzed reaction was also verified with a stable free radical of 2,2′‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones. 相似文献
10.
Estevam ML Nascimento OR Baptista MS Di Mascio P Prado FM Faljoni-Alario A Zucchi Mdo R Nantes IL 《The Journal of biological chemistry》2004,279(38):39214-39222
This work compares the effect of photogenerated singlet oxygen (O(2)((1)Delta(g))) (type II mechanism) and free radicals (type I mechanism) on cytochrome c structure and reactivity. Both reactive species were obtained by photoexcitation of methylene blue (MB(+)) in the monomer and dimer forms, respectively. The monomer form is predominant at low dye concentrations (up to 8 microm) or in the presence of an excess of SDS micelles, while dimers are predominant at 0.7 mm SDS. Over a pH range in which cytochrome c is in the native form, O(2) ((1)Delta(g)) and free radicals induced a Soret band blue shift (from 409 to 405 nm), predominantly. EPR measurements revealed that the blue shift of the Soret band was compatible with conversion of the heme iron from its native low spin state to a high spin state with axial symmetry (g approximately 6.0). Soret band bleaching, due to direct attack on the heme group, was only detected under conditions that favored free radical production (MB(+) dimer in SDS micelles) or in the presence of a less structured form of the protein (above pH 9.3). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of the heme group and the polypeptide chain of cytochrome c with Soret band at 405 nm (cytc405) revealed no alterations in the mass of the cytc405 heme group but oxidative modifications on methionine (Met(65) and Met(80)) and tyrosine (Tyr(74)) residues. Damage of cytc405 tyrosine residue impaired its reduction by diphenylacetaldehyde, but not by beta-mercaptoethanol, which was able to reduce cytc405, generating cytochrome c Fe(II) in the high spin state (spin 2). 相似文献
11.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed. 相似文献
12.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed. 相似文献
13.
The redox status of plasma thiols can be a diagnostic indicator of different pathological states. The aim of this study was to identify the age dependent changes in the plasma levels of total, free and protein bound glutathione, cysteine and homocysteine. The determination was conducted in plasma of three groups of rats: 1) young (3-month-old), 2) middle aged (19-month-old), and 3) old (31-month-old). Total levels of glutathione, cysteine and homocysteine and their respective free and protein-bound fractions decreased with age. The only exception was a rise in free homocysteine concentration in the middle group, which indicates a different pattern of transformations of this thiol in plasma. The drop in the level of protein-bound thiols suggests that the antioxidant capacity of plasma diminishes with age, which, consequently, leads to impaired protection of -SH groups through irreversible oxidation. The plasma sulfane sulfur level also declines with age, which means that aging is accompanied by inhibition of anaerobic sulfur metabolism. 相似文献
14.
R Docampo R P Mason C Mottley R P Muniz 《The Journal of biological chemistry》1981,256(21):10930-10933
Nifurtimox is reduced by rat liver microsomes to a nitro anion-free radical as indicated by ESR spectroscopy. This subcellular fraction gives a steady state radical concentration which is proportional to the square root of the protein concentration, suggesting that the nifurtimox anion radical is a necessary intermediate in the reduction and that the radical decays through a nonenzymatic second order process. The steady state concentration of the anion radical in the microsomal system is not decreased by superoxide dismutase or catalase, thus indicating that neither the superoxide anion nor hydrogen peroxide is an intermediary in the generation of the anion radical. The steady state concentration of the anion radical in the microsomal system is also not altered in the presence of metyrapone or CO and is decreased in the presence of NADP+ and p-chloromercuribenzoate. This observation suggests that the formation of nifurtimox anion radical is mediated through NADPH-cytochrome P-450 (c) reductase and not by the cytochrome P-450 system. In accordance with this interpretation, a model system consisting of NADPH and FMN-reduced nifurtimox to the nitro anion-free radical. Nifurtimox anion radical generation is significantly stimulated by rat brain and testes homogenates. The enhanced free radical formation may be the basic cause of nifurtimox toxicity in mammals. 相似文献
15.
In the present study, we investigated the changes in blood-brain barrier (BBB) permeability following brain endothelial cell exposure to different xenobiotics able to promote free radical generation during their metabolism. Our in vitro BBB model consisted of confluent monolayers of immortalized rat brain capillary endothelial cells (RBE4) grown on collagen-coated filters in the presence of C6 glioma cells grown in the lower compartment. We have recently shown that a range of xenobiotics, including menadione, nitrofurazone, and methylviologen (paraquat) may undergo monoelectronic redox cycling in isolated brain capillaries, giving rise to reactive oxygen species. In this study, addition of 100 microM menadione to the culture medium for 30 min significantly increased the permeability of endothelial cell monolayers to radiolabeled sucrose. The effect on endothelial permeability induced by menadione was dose-dependent and reversible. These permeability changes preceded the onset of cell death, as assessed by the Trypan blue exclusion method. Pre-incubation with superoxide dismutase and catalase blocked changes in sucrose permeability to control levels in a dose-dependent manner, suggesting the involvement of reactive oxygen species in menadione-induced BBB opening. 相似文献
16.
To explore whether reactive oxygen species (ROS) play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a unique microdialysis or microcannula sampling technique was used in mice transfected with a mutant Cu,Zn-superoxide dismutase (SOD1) gene from humans with familial ALS, mice transfected with the normal human SOD1 gene, and normal mice. We demonstrate for the first time that the levels of hydrogen peroxide (H(2)O(2)) and the hydroxyl radical ((.)OH) are significantly higher, and the level of the superoxide anion (O(2)(.-)) is significantly lower in ALS mutant mice than in controls, supporting by in vivo evidence the hypothesis that the mutant enzyme catalyzes (.)OH formation by the sequence: O(2)(.-) --> H(2)O(2) --> (.)OH. This removes doubts regarding the relevance of elevated ROS in FALS raised by in vitro experiments. The levels of oxidation products are also significantly higher in the mutant mice than in controls, consistent with some previous reports. Only the superoxide concentration differs between two controls among all the measurements. Our findings correlate in vivo a gene mutation to both elevated H(2)O(2) and (.)OH and increased oxidation of cellular constituents. The elevated H(2)O(2) in mutant mice indicates impairment of its detoxification pathways, perhaps by changed interactions between SOD1 and H(2)O(2) detoxification enzymes.-Liu, D., Wen, J., Liu, J., Li, L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. 相似文献
17.
Antonella Del Corso Pier Giuseppe Vilardo Mario Cappiello Ilaria Cecconi Massimo Dal Monte Daniela Barsacchi Umberto Mura 《Archives of biochemistry and biophysics》2002,397(2):392-398
Glutathione is one of the most relevant antioxidants present in cells. It exerts its scavenging action through the involvement of efficient and ubiquitous enzymes. GSH on the other hand, because of its chemical features, can scavenge reactive oxygen species without the involvement of enzymatic systems. The study deals with the mobilization of GSH pool in a nonenzymatic antioxidant system by other physiological thiols (i.e., cysteine and cysteinyl-glycine), which are far more sensitive than GSH to oxidative conditions. These thiol compounds, in the presence of iron/EDTA, can promote oxygen activation through their oxidation to disulfides. GSH, through trans-thiolation reactions, can regenerate Cys and CysGly, which can then recycle, thus inducing a massive GSH oxidation. In these conditions, making use of bovine lens aldose reductase as a protein model, evidence is given that Cys and CysGly promote specific protein S-thiolation reactions. The possibility that GSH may be recruited in controlling cellular oxygen tension is considered. 相似文献
18.
N I Neshev Iu G Bogdanova E V Radchenko I K Sarycheva 《Izvestiia Akademii nauk SSSR. Seriia biologicheskaia》1989,(2):290-293
The effect of alpha-tocopherol and its synthetic analogue which does not contain an isoprenoid chain, 2,2,5,7,8-pentamethyl-6-hydroxychroman (chromanol), on rat erythrocyte and hemoglobin has been studied. Chromanol, unlike alpha-tocopherol, induces oxidation of hemoglobin into aquomethemoglobin and causes erythrocyte hemolysis. A mechanism of the reaction has been established. It consists of two-electron reduction of haem-associated oxygen molecule. The products formed can cause oxidative membrane damage and subsequent hemolysis. The absence of similar activity of alpha-tocopherol seems to be connected with the inaccessibility of ligand sphere of hemin iron because of the presence of the isoprenoid chain. The oxidative activity of chromanol can explain the absence of E-vitamin activity in this compound. 相似文献
19.
The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation. 相似文献
20.
G V Donchenko L B Malen'kykh O M Palyvoda L I Zhalylo 《Ukrainski? biokhimicheski? zhurnal》1990,62(3):115-119
It is shown that alpha-tocopherol in vitro stimulates respiration of the liver mitochondria in E-hypovitaminosis rats only in the presence of the specific protein factor isolated from the liver cytosol. The action of alpha-tocopherol on mitochondria in the presence of NAD and a protein factor is not accompanied by an increase in the NADH level, that evidences for the absence of the direct redox interaction between NAD and tocopherol. 相似文献