首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations were carried out to determine the role of juvenile hormone (JH) and 20-hydroxy ecdysone in the synthesis and uptake of vitellogenins, which were earlier identified, purified and characterised, in Dysdercus koenigii. The concentration(s) of vitellogenin(s) in fat body, haemolymph and that of vitellin(s) in ovary were significantly lower after chemical allatectomy at eclosion. In addition, at 70 h after emergence, chemical allatectomy reduced ovarian vitellin concentration, but vitellogenin levels remained normal in the fat body and haemolymph. The haemolymph vitellogenins were not incorporated into oocytes in such insects. Administration of JH-III at 20 h after allatectomy restored vitellogenin levels in the fat body and haemolymph, but the ovary failed to incorporate the available vitellogenins from haemolymph in such insects. However, when JH-III was administered twice, one at 20 h and then at 70 h after allatectomy, vitellogenin concentrations in fat body and haemolymph and also vitellin concentrations in ovary approached control levels. It is suggested that JH has two separate roles, one in vitellogenin synthesis and the other in uptake. 20-hydroxy ecdysone had no apparent role in either vitellogenin synthesis or uptake in D. koenigii.  相似文献   

2.
  • 1.1. Isolated ovaries of egg laying females synthesize and secrete three yolk proteins (two vitellogenins and chromoprotein 2).
  • 2.2. The contribution of ovarian tissue to total yolk protein production is very small, the major site of synthesis of the three yolk proteins being the fat body.
  • 3.3. There is a time lag between yolk protein synthesis by the fat body and yolk protein sequestration by the ovary.
  • 4.4. In egg laying females, within 1 hr after the synthesis of both vitellogenins by the fat body, they appear in the oocytes as vitellins.
  相似文献   

3.
In interspecific matings between Drosophila virilis and Drosophila texana female sterility is observed in F2 hybrid females. A previous study has shown that no vitellogenin synthesis occurs in the fat body of sterile hybrid females. The results presented in this paper show that hybrid ovaries of sterile females transplanted into the abdomens of females of the parental species are not able to develop upon maturity. With few exceptions, the hybrid ovaries remained alive in the host environment, but their oocytes failed to develop to vitellogenic stages. Thus, in hybrid females between Drosophila virilis and Drosophila texana sterility is the result of defects in both the two main developmental processes of egg maturation, the synthesis of vitellogenins in the fat body and the uptake of vitellogenins by the ovary. Dev Genet 20:47–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Injected β-ecdysone was found to induce the synthesis of yolk protein (vitellogenin) in adult female Aedes aegypti without a blood meal. After injection of 5 μg ecdysone per mosquito, vitellogenin constituted 80 per cent of the total protein secreted by explanted fat body, a proportion comparable to that produced by fat body from blood-fed females. Moreover, the time course of induction of vitellogenin synthesis in ecdysone-injected mosquitoes was similar to that triggered by a blood meal. Response to ecdysone is dosedependent: 0·5 μg per female was required to stimulate synthesis to 50 per cent of the level found 18 hr after a blood meal. Ecdysone was effective in decapitated or ovariectomized mosquitoes, and also when applied directly to fat body preparations in vitro. Thus it appears that ecdysone acts directly on the fat body to induce specific protein synthesis, as does the vitellogenin stimulating hormone (VSH) from the ovary of blood-fed mosquitoes. These results suggest that ecdysone can replace VSH in inducing vitellogenin synthesis in the unfed mosquito.  相似文献   

5.
Two major families of nutritional proteins exist in insects, namely the vitellogenins and the yolk proteins. While in other insects only vitellogenins are found, cyclorraphan flies only contain yolk proteins. Possible sites of yolk protein synthesis are the fat body and the follicle cells surrounding the oocyte. We report the cloning of the yolk protein of the tsetse fly Glossina morsitans morsitans, a species with adenotrophic viviparity. The tsetse fly yolk protein could be aligned with other dipteran yolk proteins and with some vertebrate lipases. In contrast to the situation in most fly species, only a single yolk protein gene was found in the tsetse fly. Northern blot analysis showed that only the ovarian follicle cells, and not the fat body represents the site of yolk protein synthesis.  相似文献   

6.
During vitellogenesis, one of the most tightly regulated processes in oviparous reproduction, vitellogenins are incorporated into the oocyte through vitellogenin receptor (VgR)-mediated endocytosis. In this paper, we report the cloning of the VgR cDNA from Blattella germanica, as well as the first functional analysis of VgR following an RNA interference (RNAi) approach. We characterized the VgR, VgR mRNA and protein expression patterns in pre-adult and adult stages of this cockroach, as well as VgR immunolocalization in ovarioles, belonging to the panoistic type. We then specifically disrupted VgR gene function using RNAi techniques. Knockdown of VgR expression led to a phenotype characterized by low yolk content in the ovary and high vitellogenin concentration in the haemolymph. This phenotype is equivalent to that of the yolkless mutant of Drosophila melanogaster, which have the yl (VgR) gene disrupted. The results additionally open the perspective that development genes can be functionally analyzed via systemic RNAi in this basal species.  相似文献   

7.
Vitellogenins first appear in the fat body of Locusta migratoria during subphase I of vitellogenesis and increase to a constant level during subphase II. A second increase occurs shortly before the oöcyte attains maximal size. Vitellogenin content of fat body subsequently returns to that of subphase I, appropriate to the size of the subterminal oöcyte. The absolute amount of vitellogenin in the fat body is low compared to that found in the haemolymph. Fat body and haemolymph vitellogenins have immunological properties similar to oöcyte yolk proteins—when challenged with oöcyte protein antiserum. They exhibit similar electrophoretic mobility in polyacrylamide gel electrophoresis and are complex glyco-lipoproteins.  相似文献   

8.
The temporal pattern of protein production and, in particular, vitellogenin protein synthesis during the sexual maturation of Drosophila grimshawi females has been studied in vivo by briefly feeding the flies with 35S-methionine and 3H-amino acids. The overall level of incorporation was very low in young flies; it then progressively increased to reach a maximum with the onset of sexual maturity at 13-15 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses revealed three classes of proteins: those synthesized throughout the age spectrum, which constitute the majority of protein species; proteins synthesized primarily or only in young flies; and proteins synthesized only by the older flies. In this Drosophila species, the three vitellogenins (V1, V2, and V3) appeared to be synthesized in a two-phase pattern. In the first phase, small quantities of V1 and V2 were detected immunologically in the fat body and hemolymph of newly emerged and 1 day-old flies. These proteins did not accumulate in the hemolymph or the ovaries, apparently being unstable proteins. The second phase commenced in early vitellogenesis (7-9 days of age) with synthesis in the fat body of small quantities of V1 and V2, followed by V3 proteins. These proteins were secreted and accumulated in the hemolymph and 24 h later were found in the ovaries. Their quantities increased rapidly and a steady state of synthesis, release into the hemolymph, and uptake by the ovaries was reached by days 13-15. We have estimated that during the steady state of vitellogenin synthesis, a fly can synthesize in 24 h at least 152 micrograms of vitellogenins, which is more than 2% of its body weight, at an average rate of about 6.3 micrograms vitellogenins/h. About 2 micrograms of this are synthesized in the fat body, and about 4 micrograms in the ovaries. These findings are discussed in terms of their physiological implications and contrasted with the available data on Drosophila melanogaster.  相似文献   

9.
Summary

In addition to the ovary, the hepatopanocreas of female decapod crustaceans, Carcinus maenas, and Libinia emarginata is a source of yolk protein. The specific cells in the hepatopancreas that localize vitellogenins on tissue sections are revealed with lipovitellin-specific antiserum. These cells, designated vitellogenocytes, are believed to be responsible for vitellogenin synthesis in the hepatopanocreas. This conclusion is based upon immunolocalization which demonstrates a temporal relationship with vitellogenin synthesis in the hepatopanocreas. Specifically, when the oocytes are most active in vitellogenin uptake, the hepatopanocreas is producing vitellogenins most abundantly. Vitellogenocytes are relatively large and polymorphic, similar to the reserve-inclusion cells that were described by others. Yolk protein was not detected in other cells of the hepatopancreas, male reserve-inclusion cells, or pre-vitellogenic oocytes by the same method of staining. Vitellogenocytes resemble cyanocytes, the source of hemocyanin. Whether the vitellogenocytes and their precursors are related to other populations of hepatocytes, such as cyanocytes, is not known and has not yet been studied.  相似文献   

10.
11.
ABSTRACT. During maturation of adult female Leptinotarsa decemlineata , synthesis of specific proteins by the fat body was investigated with the aid of in vitro incubations. Both vitellogenins and diapause proteins were present in all females. Under long days high rates of vitellogenin synthesis were observed, which were not reflected in the amount of vitellogenin present in the haemolymph. Under short days synthesis of three diapause proteins predominated. The highest rates of synthesis of these proteins occurred during the second half of the prediapause period. At the same time storage of two diapause proteins by the fat body was observed. Comparison of the synthesis of specific proteins in vivo and in vitro revealed the fat body as the main producer of haemolymph proteins.  相似文献   

12.
13.
The hemolymph of last instar larvae of the corn earworm, Helicoverpa zea contains a blue very high-density lipoprotein (VHDL) that is selectively taken up into fat body prior to pupation. Its amino-terminal sequence was determined by Edman degradation, and used to design a degenerate primer for PCR amplification. With 5' and 3' RACE techniques, the entire cDNA coding for VHDL was amplified and sequenced. Conceptual translation reveals a 173 kDa protein that contains a 15 amino acid signal sequence immediately before the experimentally determined N-terminus of the mature protein. The protein contains a typical lipoprotein N-terminal domain, and shows high sequence similarity to vitellogenins from Lepidoptera and other insect species. VHDL mRNA was not detectable in adult H. zea, and antibodies raised against VHDL did not react with adult hemolymph or yolk proteins. Therefore VHDL, although a member of the vitellogenin gene family, seems to be distinct from the vitellogenin expressed in adult females.  相似文献   

14.
In many insects, development of the oocyte arrests temporarily just before vitellogenesis, the period when vitellogenins (yolk proteins) accumulate in the oocyte. Following hormonal and environmental cues, development of the oocyte resumes, and endocytosis of vitellogenins begins. An essential component of yolk uptake is the vitellogenin receptor. In this report, we describe the ovarian expression pattern and subcellular localization of the mRNA and protein encoded by the Drosophila melanogaster vitellogenin receptor gene yolkless (yl). yl RNA and protein are both expressed very early during the development of the oocyte, long before vitellogenesis begins. RNA in situ hybridization and lacZ reporter analyses show that yl RNA is synthesized by the germ line nurse cells and then transported to the oocyte. Yl protein is evenly distributed throughout the oocyte during the previtellogenic stages of oogenesis, demonstrating that the failure to take up yolk in these early stage oocyte is not due to the absence of the receptor. The transition to the vitellogenic stages is marked by the accumulation of yolk via clathrin-coated vesicles. After this transition, yolk protein receptor levels increase markedly at the cortex of the egg. Consistent with its role in yolk uptake, immunogold labeling of the receptor reveals Yl in endocytic structures at the cortex of wild-type vitellogenic oocytes. In addition, shortly after the inception of yolk uptake, we find multivesicular bodies where the yolk and receptor are distinctly partitioned. By the end of vitellogenesis, the receptor localizes predominantly to the cortex of the oocyte. However, during oogenesis in yl mutants that express full-length protein yet fail to incorporate yolk proteins, the receptor remains evenly distributed throughout the oocyte.  相似文献   

15.
16.
日本沼虾卵黄蛋白原合成部位的初步研究   总被引:1,自引:0,他引:1  
十足目卵巢中卵黄的来源,在过去的几十年研究中一直存在争议,内源性合成和外源性合成均有报道。以雌性日本沼虾为实验材料,根据外形观察和组织学研究确定其发育阶段,可以分为:卵原细胞增殖期;卵黄发生前期;初级卵黄发生期;次级卵黄发生期;成熟期和抱卵期(消退期)。从处于不同发育期的卵巢和肝胰腺中提取总RNA,用RT-PCR方法探讨不同发育期的日本沼虾卵巢和肝胰腺卵黄蛋白原mRNA表达,确定是否有卵黄蛋白原的合成功能。检测结果可以初步判定日本沼虾卵巢和肝胰腺都具有卵黄蛋白原mRNA表达功能,都是卵黄蛋白原的合成部位,其合成的量与沼虾卵巢的发育阶段相关。  相似文献   

17.
Pulse labeling of proteins, in vivo, followed by indirect immunoprecipitation of the vitellogenin polypeptides, has shown that not only the thoracic and abdominal fat bodies but also the ovary devote a significant percentage of their synthetic capacity to vitellogenin (VG) production. These methods have also shown that ovarian stages 9 and 10 contribute the majority of VG synthesized by the ovary and that the follicular epithelium of these stages is the specific site of VG synthesis. In situ hybridization (of a probe containing the coding regions of the two larger polypeptides) to sections of ovaries confirmed that the VG mRNAs are abundant species in the cytoplasm of stage 9 and 10 follicle cells. In addition, two of the three polypeptides (VGP1 and VGP2) are produced at roughly equal levels by the follicle cells, but the smallest polypeptide (VGP3) is produced at one-fourth this level by these cells. Hybridization of cloned genomic probes (T. Barnett, C. Pachl, J. P. Gergen, and P. C. Wensink, 1980, Cell21, 729–738) to RNA bound on nitrocellulose filters has shown that the ovary contributes aproximately 35% of the total amount of the mRNAs coding for VGP1 and VGP2 but only about 10% of the mRNA for VGP3. The same procedure demonstrated that the levels of all three VG mRNAs during follicular development closely parallel VG polypeptide synthesis. Finally, culture of ovaries in males has shown that the mRNA levels accurately reflect the follicle cell contribution to VG synthesis.  相似文献   

18.
In analyzing the in vitro pattern of protein synthesis by the fat body and ovaries of the Hawaiian species Drosophila grimshawi, we have found that the ovaries synthesize much more protein than the female fat body and that the majority of the synthesized proteins are retained by the ovarian tissues. In contrast, the fat body secrets most of the proteins into the culture medium. Vitellogenins are the major class of proteins synthesized and released into the medium by both tissues. The synthesis of the three vitellogenin proteins (V1, V2, V3) is noncoordinate in the two tissues. Ovaries synthesize much more of the V2 protein, less V1 and very little V3, whereas fat body synthesizes more V1 protein with lesser quantities of the other two. The follicle cells were identified as the site of ovarian vitellogenin synthesis in D. grimshawi, confirming the findings in D. melanogaster. In D. grimshawi, the three vitellogenins are synthesized by the follicle cells in a noncoordinate and developmentally regulated manner. V2 and V1 are the predominant proteins at the onset of vitellogenesis (S8-9); their production peaks together with that of V3 a few hours later (S10) and then decreases to quantities equal to that of V3 during early choriogenesis (S11). During active choriogenesis (S12), V2 and V1 cease to be synthesized, but V3 synthesis continues. The vitellogenins synthesized by the follicles in vitro are released into the medium and not incorporated into the oocyte.  相似文献   

19.
《Insect Biochemistry》1987,17(3):401-415
Phosphorylation of vitellogenin (yolk protein precursor) and vitellin (major yolk protein) polypeptides of Leucophaea maderae was studied by [32P]ortho phosphate labeling and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiography. The vitellogenin molecule was isolated from the hemolymph and fat body by antibody precipitation and high-performance liquid chromatography (HPLC), and shown to consist of at least five polypeptides (“subunits”) which had apparent molecular masses of 155, 112, 95, 92 and 54 kD. Labeling studies with 32P showed that the covalently attached phosphorus was distributed in an uneven fashion among the five polypeptides. The two heavily-phosphorylated polypeptides, 112 and 54 kD, corresponded to the large and small, mature vitellin subunits. Quantitative SDS-PAGE analysis of long-term 32P-labeled vitellin showed that these large and small “subunits” contained 55 and 30%, respectively, of the total radioactivity.When fat body was pulse-labeled with 32P we found a heavily-phosphorylated intracellular 215 kD polypeptide which was precipitable with anti-vitellogenin. The synthesis of this intracellular precursorform of vitellogenin (pre-Vg) was under absolute juvenile hormone control. In vitro32P pulse-chase experiments showed that pre-Vg was proteolytically processed within the fat body into some (or possibly all) of the mature vitellogenin subnits. Furthermore, peptide mapping confirmed that all of the phosphorylated vitellogenin subunits were derived from pre-Vg. Since previous studies have shown that phosphoserine residues account for essentially all of the covalently-attached phosphorus of the native vitellogenin molecule, we speculate that the asymmetric pattern of vitellogenin and vitellin subunit-phosphorylation is due to an uneven distribution of phosphoserine residues along the initial pre-Vg polypeptide chain. Finally, we conclude that phosphorylation of vitellogenin occurred post-translationally in the fat body endoplasmic reticulum because we could identify 32P-labeled pre-Vg in purified microsomal vesicles but not in nascent vitellogenin polypeptide chains attached to vitellogenin polyribosomes.  相似文献   

20.
本文利用[3H]亮氨酸参入及特异性抗体沉淀等方法,研究了七星瓢虫体外培养的脂肪体中卵黄原蛋白合成与分泌的动力学,以及不同发育期脂肪体与卵巢中卵黄原蛋白合成的定量变化。脂肪体中卵黄原蛋白的合成与分泌在培养1—4小时内直线上升,到6小时稍下降。保留在脂肪体内的卵黄原蛋白缓慢积累,但一直水平很低。卵黄原蛋白合成的最初30分钟,分泌速率较慢,60%以上的卵黄原蛋白保留在脂肪体内。1小时后分泌速率加快,70%以上的卵黄原蛋白被分泌,保留的卵黄原蛋白在4小时中逐渐被释放。在4小时,被分泌的卵黄原蛋白超过80%,最高可达92%。 在雌虫发育过程中,脂肪体中卵黄原蛋白合成的高峰在羽化后11—15天,所合成的卵黄原蛋白占整个发育期合成总量的80%。在合成高峰期分泌的卵黄原蛋白高达90%以上,但在发育的早期和晚期分泌的卵黄原蛋白仅占30%或稍多。 卵黄发生前的卵巢就开始合成卵黄原蛋白,但卵巢中卵黄原蛋白的合成高峰期与脂肪体中大致相同。与脂肪体相反,卵巢合成的卵黄原蛋白大部分保留在卵巢内。在卵黄发生盛期,卵巢合成的卵黄原蛋白为脂肪体合成的卵黄原蛋白的20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号