首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA fragment homologous to the homothallism (HO) gene of Saccharomyces cerevisiae was isolated from Saccharomyces paradoxus and was found to contain an open reading frame that was 90.9% identical to the coding sequence of the S. cerevisiae HO gene. The putative HO gene was shown to induce diploidization in a heterothallic haploid strain from S. cerevisiae. Phylogenetic analysis revealed that the coding and 5'-upstream regulatory regions from five Saccharomyces sensu stricto HO genes have coevolved, and that S. paradoxus is phylogenetically closer to S. cerevisiae than to S. bayanus. Finally, heterothallic haploid strains were isolated from the original homothallic type strain of S. paradoxus by disrupting the S. paradoxus HO gene with the S. cerevisiae URA3 gene.  相似文献   

2.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

3.
A novel HO gene (Uv-HO) was cloned from the Saccharomyces bayanus var. uvarum (abbreviated as S. uvarum in this study) type strain. The coding region of Uv-HO showed relatively high homology (95%) to that of the Sb-HO gene (S. bayanus var. bayanus HO), but not to the HO genes of other Saccharomyces sensu stricto species. However, the 5′ and 3′ non-coding region of Uv-HO showed less similarity (79% and 76% respectively) even to those of the most homologous gene Sb-HO. Motifs of the mating-type control and the cell-cycle control were conserved in the 5′ non-coding region of Uv-HO, but numbers and positions of motifs were different from those of Sb-HO. CHEF-Southern analysis showed that all tested strains of S. bayanus species, including S. uvarum, carried the HO gene on the 1,100-kb chromosome. By HO-typing PCR using mixed primers, which provided a rapid and convenient tool for yeast identification, either the Uv-HO gene or the Sb-HO gene was detected in strains of S. bayanus species, but two strains were found to have both types of HO gene in each genome. These results suggest that S. uvarum has a unique sequence, but might share the same chromosome constitution within S. bayanus species, and that S. bayanus is a heterogeneous species, of which some strains might be natural hybrid.  相似文献   

4.
The aim of the present study was to design species-specific primers capable of distinguishing between Saccharomyces cerevisiae, Saccharomyces bayanus/Saccharomyces pastorianus. The 5'-specific primers were designed from the ITS-1 region (between positions 150 and 182 from the 3'-SSU end) and the 3'-specific primers were located in the LSU gene (positions 560-590 from the 5'-end of this gene). These primers were tested with different collections and wild strains of these species and the results showed that the primers were capable of distinguishing between S. cerevisiae strains and S. bayanus/S. pastorianus. Not enough sequence differences were found between S. bayanus and S. pastorianus to design specific primers for these species using this region. This method offers an effective tool for a quick differentiation of the Saccharomyces strains of the most common species involved in industrial processes.  相似文献   

5.
Accumulation and secretion of beta-glucanases have been studied in vivo by using a thermosensitive secretory mutant of Saccharomyces cerevisiae blocked at the endoplasmic reticulum level (sec 18-1). When incubated at the restrictive temperature no accumulation of active glucanases was observed. Following a shift to permissive conditions in the presence of cycloheximide a rise in the internal activity took place. The increase in total glucanase activity was partially due to the activation of an exo-glucanase that hydrolyzes PNPG. It is concluded that glucanases are synthesized in inactive precursor forms and are converted to the active forms in their secretory pathway.  相似文献   

6.
酿酒酵母INVSC1对油菜菌核病菌抑制作用的研究   总被引:1,自引:0,他引:1  
以油菜菌核病菌为供试病原菌,在摇瓶发酵备件下,研究了酿酒酵母菌INVSC1在各种培养条件下对油菜菌核病菌的抑菌效果,确定了酿酒酵母的最佳培养条件:最佳培养温度为28℃,培养时间为20h,接种量为5%。酿酒酵母能抑制油菜菌核病可能与它发酵产乙醇有关。酿酒酵母抑制油菜菌核病的发现使生物防治又多了一类新的可供选择的生防菌。  相似文献   

7.
金城 《微生物学通报》2012,39(1):0138-0138
微生物细胞通常仅含2%3%油脂,但少数微生物含油脂率却可达70%以上,所以高含油脂量使微生物油脂实际开发成为可能。目前用于生产多不饱和脂肪酸的微生物主要为藻类和真菌。尽管微生物油脂是当前的研究热点,已经引起广大研究者的重视,但目前国内外研究大都集中在含油脂量在干重20%以上的微生物,如浅白色隐性酵母、粘红酵母等,而对于酿酒酵母来说,则很少见到研究其产油脂的相关报道。  相似文献   

8.
β-葡萄糖苷酶在酿酒酵母表面的表达   总被引:1,自引:0,他引:1  
应用表面表达技术对来自Trichodermareesei的β-葡萄糖苷酶在酿酒酵母表面的表达及后期性质进行了研究。实验结果表明酵母表面表达酶有活性,该酶的最佳诱导时间为24h,最适温度是70℃,而酶活的最适pH是5.5。使异源表面表达了Bgl1的酵母在以纤维二糖为唯一碳源的培养基中生长,发酵结果表明纤维二糖被明显利用了,但在培养186h后,发酵液中仍残留一定量的纤维二糖。这种技术对纤维素发酵系统中纤维二糖酶活性低的现状有所帮助。  相似文献   

9.
酿酒酵母的细胞衰老研究作为生命科学领域的前沿课题,对解析高等真核生物衰老的分子机制具有重要意义。迄今为止,在酵母中已经确立的衰老模式有两种,即复制型衰老和时序型衰老。细胞衰老的影响因子较多,涉及到很多过程,所以研究起来非常复杂。综述了两种细胞衰老机制的研究进展。  相似文献   

10.
Seven strains of Saccharomyces cerevisiae all produced lipase when grown in shake flask culture. The best strain, DSM 1848, produced 4.0U of lipase in the medium containing olive oil and yeast extract. Production of the lipase was growth-associated.  相似文献   

11.
Data obtained on the conversion of d-glucose to alcohol using Saccharomyces cerevisiae in batch culture has been analysed kinetically. The effects of different kinetic parameters, e.g. rates of ethanol and biomass formation, rate of d-glucose utilization and variation of pH have been studied. Analysis of data was made on the basis of Michaelis-Menten, Leudeking-Piret and simple kinetics. Unsteady rate behaviour in the lag phase was observed and explained.  相似文献   

12.
A study of 26 killer-resistant wine strains of Saccharomyces cerevisiae, isolated during spontaneous fermentations in three vineyards in NW Spain, was carried out employing several methods that included a spheroplast-killing assay and analysis of chromosomal DNA patterns by pulse-field agarose electrophoresis. The results showed that 92% of the strains were derivatives of K2 killer toxin producing wine strains isolated from the same fermentations, and that they could be grouped into four different karyotypes. The remaining strains were killer-resistant at cell-wall level and were not related to the others, as was demonstrated by the absence of L and M ds-RNAs and by their different karyotypes.  相似文献   

13.
酿酒酵母乙醇耐受性机理研究进展   总被引:2,自引:0,他引:2  
酿酒酵母(Sacchromyces cerevisiae)一直是主要的生物乙醇和酿酒业发酵菌株, 具有发酵速度快、乙醇产量高特性。然而, 产物乙醇积累造成的毒性效应是限制乙醇产量的主要因素之一, 研究酿酒酵母乙醇耐受性为解决这一工业难题奠定了理论基础。本文从乙醇对酵母细胞生理、细胞结构和组分的影响, 以及酿酒酵母乙醇耐受性的遗传基础方面综述了酿酒酵母乙醇耐受性机理的研究进展。  相似文献   

14.
An extracellular endo-polygalacturonase (PGase) produced by a mutant of Saccharomyces cerevisiae was isolated. The enzyme was regarded, immunologically, as a PGase belonging to the Kluyveromyces marxianus group. The enzyme had properties similar to the PGase from K. marxianus in heat and pH stability, and N-terminal amino acid sequence. However, the enzyme showed different properties in optimum pH and temperature, molecular weight, and reactivity in antiserum against PGase from K. marxianus, indicating that the enzyme has a different molecular structure from the PGase from K. marxianus.  相似文献   

15.
The essentiality of iodine for humans, especially in the early stages of life, is well recognized. The chemical forms of iodine in food supplements, infant formulae and iodated salt are either iodide (KI) or iodate (KIO3). Because there are no or rare data about iodine uptake by yeasts, we investigated the influence of different sources of iodine, as KI, KIO3 and periodate (KIO4), on its uptake in and growth of the model yeast Saccharomyces cerevisiae . KIO3 inhibited the growth of the yeast the most and already at a 400 μM initial concentration in the growth medium; the OD was reduced by 23% in comparison with the control, where no KIO3 was added. The uptake of different iodine sources by the yeast S. cerevisiae was minimal, in total <1%. Tracer experiments with radioactive 131I added as KI showed that the yeast S. cerevisiae does not have the ability to transform KI into volatile species. We investigated the specificity of iodine uptake added as KIO3 in the presence of Na2SeO4 or ZnCl2 or K2CrO4 in the growth medium, and it was found that chromate had the most influence on reduction of KIO3 uptake.  相似文献   

16.
Abstract The flocculation character in strain IM1-8b of Saccharomyces cerevisiae is controlled by a single and dominant gene shown to be allelic to FLO1 . Such a gene has been both mitotically and meiotically mapped on the right arm of chromosome I at 4.7 cM from PHO11 . The phenotype was suppressed by a single gene of wide distribution among non-flocculent strains (proposed as fsu3 ) that, however, was unable to suppress other FLO1 genes in other flocculent strains.  相似文献   

17.
生物乙醇作为一种可再生的清洁能源,正在引起人们的广泛关注.酿酒酵母是乙醇生产中最常用的发酵菌株,但是乙醇耐受性往往成为限制酿酒酵母菌乙醇产量的重要因素.选育耐受高浓度乙醇的酵母菌株对于提高乙醇产率具有重要意义.然而传统的菌株改良方法具有育种周期长,突变方向不定等缺点.主要综述了近年来国内外对酿酒酵母菌耐受乙醇的分子生物学机理方面的研究成果,进而总结了提高酿酒酵母乙醇耐受性的基因工程、代谢工程.  相似文献   

18.
雌马酚是大豆异黄酮的代谢产物,是一种天然的选择性雌激素受体调节剂,稳定性和生物学活性高。为实现雌马酚的微生物合成,采用模块途径工程策略,构建编码雌马酚合成关键酶基因 orf-1、orf-2和orf-3 的表达载体,成功用于转化酿酒酵母BY4741,得到工程菌株。结果表明,工程菌株有效表达了外源基因,并可将大豆异黄酮代谢中间体二氢大豆苷元转化为雌马酚。为构建从头合成雌马酚的微生物细胞工厂提供了重要科学参考。  相似文献   

19.
酿酒酵母细胞表面工程应用研究新进展   总被引:4,自引:0,他引:4  
酿酒酵母表面展示工程是一个新兴的蛋白表达系统,由于它能进行蛋白翻译后修饰,能方便地对表达的蛋白产物进行检测和筛选,近年来应用研究发展迅猛。它在构建全细胞催化剂、抗原/抗体库、生物吸附剂、生物传感器、组合蛋白文库、免疫检测及亲和纯化中取得了很多新的应用,在蛋白质分子的功能研究与应用中发挥了更加重要的作用。  相似文献   

20.
AIMS: Recombinant Saccharomyces cerevisiae strains harbouring different levels of xylulokinase (XK) activity and effects of XK activity on utilization of xylulose were studied in batch and fed-batch cultures. METHODS AND RESULTS: The cloned xylulokinase gene (XKS1) from S. cerevisiae was expressed under the control of the glyceraldehyde 3-phosphate dehydrogenase promoter and terminator. Specific xylulose consumption rate was enhanced by the increased specific XK activity, resulting from the introduction of the XKS1 into S. cerevisiae. In batch and fed-batch cultivations, the recombinant strains resulted in twofold higher ethanol concentration and 5.3- to six-fold improvement in the ethanol production rate compared with the host strain S. cerevisiae. CONCLUSIONS: An effective conversion of xylulose to xylulose 5-phosphate catalysed by XK in S. cerevisiae was considered to be essential for the development of an efficient and accelerated ethanol fermentation process from xylulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Overexpression of the XKS1 gene made xylulose fermentation process accelerated to produce ethanol through the pentose phosphate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号