首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of mercuric ions (Hg(2+)) on prawn oocytes was examined. Prawn oocytes constitute an unusual system in that they are activated at spawning by seawater Mg(2+), which mediates correlated dynamic changes in intracellular free calcium concentration [(Ca(2+))(i)] and membrane conductance associated with the meiosis resumption. Using a voltage clamp technique and intracellular calcium measurements, we observed that treatment with Hg(2+) (5, 10, and 20 microM) resulted in simultaneous impairments of both (Ca(2+))(i) and membrane current responses to external Mg(2+). Treatment with Hg(2+) also resulted in a gradual dose-dependent slow increase in the baseline level of both (Ca(2+))(i) and membrane conductance, independent of stimulation with external Mg(2+). The effect of Hg(2+) on (Ca(2+))(i) and membrane conductance changes resulted from a block of the signal transduction pathway at some point before the InsP(3) receptor channel involved in Ca(2+) release from the endoplasmic reticulum (ER) stocks. The Hg(2+)-dependent gradual increase in both (Ca(2+))(i) and membrane conductance baseline levels may potentially result from a slow permeabilization of the ER membrane, resulting in Ca(2+) leaking into the cytosol. Indeed, this effect could be blocked with the cell permeable Hg(2+) competitor dithiothreitol, which was able to displace Hg(2+) from its intracellular target regardless of whether external Ca(2+) was present or not.  相似文献   

2.
The ubiquitous Ca(2+)-regulatory protein calmodulin activates target enzymes as a response to submicromolar Ca(2+) increases in a background of millimolar Mg(2+). The potential influence of Mg(2+)/Ca(2+) competition is especially intriguing for the N-terminal domain of the protein which possesses the sites with the lowest Ca(2+) specificity. The interdependence of Ca(2+) and Mg(2+) binding in the N-terminal domain of calmodulin was therefore studied using (43)Ca NMR, (1)H-(15)N NMR, and fluorescent Ca(2+) chelator techniques. The apparent affinity for Ca(2+) was found to be significantly decreased at physiological Mg(2+) levels. At Ca(2+) concentrations of an activated cell the (Ca(2+))(2) state of the N-terminal domain is therefore only weakly populated, indicating that for this domain Ca(2+) binding is intimately associated with binding of target molecules. The data are in good agreement with a two-site model in which each site can bind either Ca(2+) or Mg(2+). The Mg(2+)-Ca(2+) binding interaction is slightly positively allosteric, resulting in a significantly populated (Mg(2+))(1)(Ca(2+))(1) state. The Ca(2+) off-rate from this state is determined to be at least one order of magnitude faster than from the (Ca(2+))(2) state. These two findings indicate that the (Mg(2+))(1)(Ca(2+))(1) state is structurally and/or dynamically different from the (Ca(2+))(2) state. The (43)Ca quadrupolar coupling constant and the (1)H and (15)N chemical shifts of the (Mg(2+))(1)(Ca(2+))(1) state were calculated from titration data. The values of both parameters suggest that the (Mg(2+))(1)(Ca(2+))(1) state has a conformation more similar to the "closed" apo and (Mg(2+))(2) states than to the "open" (Ca(2+))(2) state.  相似文献   

3.
In order to calculate the actual, rather than the relative, intracellular Ca(2+) concentration (Ca(2+))(i) in mammalian sperm cells, using fluorescent probes whose fluorescence emission differs between the probe. Ca(2+) complex and free probe, the value of the dissociation constant for the probe. Ca(2+) complex, K(D), is required. Interaction of the probe with cellular components may change the intracellular value of K(D) from that determined in buffered solution. We had previously shown that fluo-3, whose Ca(2+) complex is highly fluorescent whereas free fluo-3 is not, could be used to monitor changes of (Ca(2+))(i) in mouse sperm. In this report, we describe a method for determining K(D) for the fluo-3. Ca(2+) complex in mouse sperm suspended in medium MJB, a medium in which the sperm remain viable, but which contains high Ca(2+). The method involved treating the sperm with ionomycin to provide a plasma membrane Ca(2+) carrier, with nigericin to eliminate pH gradient, and with gramicidin D to eliminate membrane potential, such that (Ca(2+))(i) equilibrates with medium Ca(2+) concentration (Ca(2+))(e), then titrating (Ca(2+))(e) with EGTA in added aliquots to near nil concentration. At EGTA concentrations in excess of total medium Ca(2+), an approximation algorithm was used to calculate (Ca(2+))(e), based on the known K(D) for the EGTA. Ca(2+) complex. The fluorescence of the intracellular fluo-3. Ca(2+) complex, F, decreased with increasing additions of EGTA; (Ca(2+))(i) = (Ca(2+))(e) was plotted as a linear function of F/[F(max) - F]; the slope gives K(D). At 37 degrees C, intracellular K(D) was calculated to be 0.636 +/- 0.018 microM (+/-SEM, n = 8). At 37 degrees C and 20 degrees C, K(D) values in MJB were calculated to be 0.502 +/- 0.022 and 0.578 +/- 0.029 (+/-SEM, n =8 and n = 6), respectively. The higher intracellular K(D) value implies probe interaction with cytosol components, primarily those in the head, as this compartment is the major contributor to sperm fluorescence. Changes in (Ca(2+))(i), monitored with fluo-3 fluorescence, that occur on interaction of capacitated mouse sperm with the zona pellucida and may now be quantified, using 0.636 microM for K(D) of the intracellular fluo-3. Ca(2+) complex.  相似文献   

4.
Ca(+) signaling plays a crucial role in control of cell cycle progression, but the understanding of the dynamics of Ca(2+) influx and release of Ca(2+) from intracellular stores during the cell cycle is far from complete. The aim of the present study was to investigate the role of the free extracellular Ca(2+) concentration ([Ca(2+)](o)) in cell proliferation, the pattern of changes in the free intracellular Ca(2+) concentration ([Ca(2+)](i)) during cell cycle progression, and the role of the transient receptor potential (TRP)C1 in these changes as well as in cell cycle progression and cell volume regulation. In Ehrlich Lettré Ascites (ELA) cells, [Ca(2+)](i) decreased significantly, and the thapsigargin-releasable Ca(2+) pool in the intracellular stores increased in G(1) as compared with G(0). Store-depletion-operated Ca(2+) entry (SOCE) and TRPC1 protein expression level were both higher in G(1) than in G(0) and S phase, in parallel with a more effective volume regulation after swelling [regulatory volume decrease (RVD)] in G(1) as compared with S phase. Furthermore, reduction of [Ca(2+)](o), as well as two unspecific SOCE inhibitors, 2-APB (2-aminoethyldiphenyl borinate) and SKF96365 (1-(β-[3-(4-methoxy-phenyl)propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride), inhibited ELA cell proliferation. Finally, Madin-Darby canine kidney cells in which TRPC1 was stably silenced [TRPC1 knockdown (TRPC1-KD) MDCK] exhibited reduced SOCE, slower RVD, and reduced cell proliferation compared with mock controls. In conclusion, in ELA cells, SOCE and TRPC1 both seem to be upregulated in G(1) as compared with S phase, concomitant with an increased rate of RVD. Furthermore, TRPC1-KD MDCK cells exhibit decreased SOCE, decreased RVD, and decreased proliferation, suggesting that, at least in certain cell types, TRPC1 is regulated during cell cycle progression and is involved in SOCE, RVD, and cell proliferation.  相似文献   

5.
6.
7.
8.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

9.
Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division--with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed--the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca2+ imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca2+ buffer loading to demonstrate that Ca2+ signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca2+ wave following fertilization. Rather, we show distinct slow localized Ca2+ elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca2+ increases. Surprisingly, this Ca2+ requirement cannot be explained by co-dependence on a single G1/S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca2+ elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca2+-dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.  相似文献   

10.
cGMP-regulated store-operated calcium entry in human hepatoma cells   总被引:1,自引:0,他引:1  
This study aimed to investigate cGMP-regulated store-operated Ca(2+)entry in human 7721 hepatoma cells. [Ca(2+)](i)was measured using Fura2/AM. After incubation of the cells with 4 microm thapsigargin, Ca(2+)entry was evoked by application of 1 mMm Ca(2+)to extracellular solution and was blocked by 3 m m Ni(2+), indicating the presence of store-operated Ca(2+)entry in human 7721 hepatoma cell line. Application of 8-Br-cGMP reduced the [Ca(2+)](i)in hepatoma 7721 cells by 80%. These data demonstrated for the first time that store-operated Ca(2+)entry pathway is present in human hepatoma cells, which is regulated by cGMP.  相似文献   

11.
Recent evidence suggests that unscheduled cell cycle activity leads to neuronal cell death. 3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces cell death in both striatum and cerebral cortex. Here we analyzed the involvement of aberrant cell cycle progression in 3-NP-induced cell death in these brain regions. 3-NP reduced the level of cyclin-dependent kinase inhibitor p27 in striatum but not in cerebral cortex. 3-NP also induced phosphorylation of retinoblastoma protein, a marker of cell cycle progression at late G(1) phase, only in striatum. Pharmacological experiments revealed that cyclin-dependent kinase activity and N-methyl-d-aspartate (NMDA) receptor were cooperatively involved in cell death by 3-NP in striatal neurons, whereas only NMDA receptor was involved in 3-NP-induced neurotoxicity in cortical neurons. Death of striatal neurons was preceded by elevation of somatic Ca(2+) and activation of calpain, a Ca(2+)-dependent protease. Both striatal p27 down-regulation and cell death provoked by 3-NP were dependent on calpain activity. Moreover, transfection of p27 small interfering RNA reduced striatal cell viability. In cortical neurons, however, there was no change in somatic Ca(2+) and calpain activity by 3-NP, and calpain inhibitors were not protective. These results suggest that 3-NP induces aberrant cell cycle progression and neuronal cell death via p27 down-regulation by calpain in striatum but not in the cerebral cortex. This is the first report for differential involvement of cell cycle reactivation in different brain regions and lightens the mechanism for region-selective vulnerability in human disease, including Huntington disease.  相似文献   

12.
Arterial smooth muscle cells enter the cell cycle and proliferate in conditions of disease and injury, leading to adverse vessel remodeling. In the pulmonary vasculature, diverse stimuli cause proliferation of pulmonary artery smooth muscle cells (PASMCs), pulmonary artery remodeling, and the clinical condition of pulmonary hypertension associated with significant health consequences. PASMC proliferation requires extracellular Ca(2+) influx that is intimately linked with intracellular Ca(2+) homeostasis. Among the primary sources of Ca(2+) influx in PASMCs is the low-voltage-activated family of T-type Ca(2+) channels; however, up to now, mechanisms for the action of T-type channels in vascular smooth muscle cell proliferation have not been addressed. The Ca(v)3.1 T-type Ca(2+) channel mRNA is upregulated in cultured PASMCs stimulated to proliferate with insulin-like growth factor-I (IGF-I), and this upregulation depends on phosphatidylinositol 3-kinase/Akt signaling. Multiple stimuli that trigger an acute rise in intracellular Ca(2+) in PASMCs, including IGF-I, also require the expression of Ca(v)3.1 Ca(2+) channels for their action. IGF-I also led to cell cycle initiation and proliferation of PASMCs, and, when expression of the Ca(v)3.1 Ca(2+) channel was knocked down by RNA interference, so were the expression and activation of cyclin D, which are necessary steps for cell cycle progression. These results confirm the importance of T-type Ca(2+) channels in proper progression of the cell cycle in PASMCs stimulated to proliferate by IGF-I and suggest that Ca(2+) entry through Ca(v)3.1 T-type channels in particular interacts with Ca(2+)-dependent steps of the mitogenic signaling cascade as a central component of vascular remodeling in disease.  相似文献   

13.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

14.
In endothelial cells nitric oxide synthase is a dominant affector in the calmodulin network by virtue of its ability to bind a significant fraction of limiting intracellular calmodulin. We have investigated how this affector function influences the kinetics of calmodulin-dependent signaling in cells co-expressing the synthase and a fluorescent calmodulin target analog similar in its interactions with calmodulin to myosin light chain kinase. The synthase binds (Ca(2+))(4)-calmodulin with a K(d) value of approximately 0.2 nM and an association rate constant of approximately 1.5 x 10(5) M(-1) s(-1). These values are, respectively, 10- and 100-fold smaller than the corresponding values for the analog. Thus, when Ca(2+) is added to a mixture of calmodulin, target analog and synthase in vitro a large fluorescence transient with a relaxation time of approximately 600 s is observed as (Ca(2+))(4)-calmodulin is rapidly bound to the analog and then slowly captured by the higher affinity synthase. A rapid increase in the free Ca(2+) concentration elicits similar transient analog responses in cells expressing the cytoplasmic target analog and either a wild-type membrane bound or mutant cytoplasmic synthase. Transient responses are not observed in cells co-expressing the fluorescent analog and a mutant T497D synthase unable to bind calmodulin. These results demonstrate that dominant affectors in the calmodulin network shape both the magnitudes and time courses of target responses in the cell.  相似文献   

15.
16.
Intramural gradients of intracellular Ca(2+) (Ca(i)(2+)) Ca(i)(2+) handling, Ca(i)(2+) oscillations, and Ca(i)(2+) transient (CaT) alternans may be important in long-duration ventricular fibrillation (LDVF). However, previous studies of Ca(i)(2+) handling have been limited to recordings from the heart surface during short-duration ventricular fibrillation. To examine whether abnormalities of intramural Ca(i)(2+) handling contribute to LDVF, we measured membrane voltage (V(m)) and Ca(i)(2+) during pacing and LDVF in six perfused canine hearts using five eight-fiber optrodes. Measurements were grouped into epicardial, midwall, and endocardial layers. We found that during pacing at 350-ms cycle length, CaT duration was slightly longer (by ?10%) in endocardial layers than in epicardial layers, whereas action potential duration (APD) exhibited no difference. Rapid pacing at 150-ms cycle length caused alternans in both APD (APD-ALT) and CaT amplitude (CaA-ALT) without significant transmural differences. For 93% of optrode recordings, CaA-ALT was transmurally concordant, whereas APD-ALT was either concordant (36%) or discordant (54%), suggesting that APD-ALT was not caused by CaA-ALT. During LDVF, V(m) and Ca(i)(2+) progressively desynchronized when not every action potential was followed by a CaT. Such desynchronization developed faster in the epicardium than in the other layers. In addition, CaT duration strongly increased (by ~240% at 5 min of LDVF), whereas APD shortened (by ~17%). CaT rises always followed V(m) upstrokes during pacing and LDVF. In conclusion, the fact that V(m) upstrokes always preceded CaTs indicates that spontaneous Ca(i)(2+) oscillations in the working myocardium were not likely the reason for LDVF maintenance. Strong V(m)-Ca(i)(2+) desynchronization and the occurrence of long CaTs during LDVF indicate severely impaired Ca(i)(2+) handling and may potentially contribute to LDVF maintenance.  相似文献   

17.
Lovastatin is a potent inhibitor of protein prenylation, and it has been reported to have pleiotropic cellular effects. In the present study we have elucidated the effects of lovastatin on cell cycle progression and apoptosis of normal human B-lymphocytes. When added to B-lymphocytes stimulated with anti-immunoglobulin (anti-mu) and SAC, lovastatin (20 microM) inhibited the cells in the late G1 phase of the cell cycle. Thus, no early activation parameters such as Ca(2+) flux or MYC induction were affected by lovastatin, whereas progression of cells into the second cell cycle as well as DNA synthesis was markedly reduced. We therefore examined the effects of lovastatin on components of the cell cycle machinery responsible for regulating the G1/S transition. We demonstrated that pRB phosphorylation, cdk2 activity needed for this phosphorylation, and the levels of cyclin A, D, and E were inhibited after 24 h of lovastatin treatment, while the levels of p27(Kip1) were elevated. There was no effect on p21(Cip1), cyclin D2, cdk4, and cdk6. These data are consistent with the cells being inhibited by lovastatin between 24 and 32 h into G1. Lovastatin added to stimulated B-cells in late G1 still inhibited the DNA synthesis by 60%, but at this point only minor effects were noted on the cell cycle machinery. We therefore looked for induced apoptosis as an explanation for reduced S-phase entry of the cells. However, despite the ability to enhance the apoptosis of unstimulated B-cells from 48 to 61% as judged by the TUNEL method, lovastatin only marginally affected apoptosis when administered to stimulated B-cells. Thus, it appears that accelerated apoptosis cannot account for the effect of lovastatin on cell cycle progression.  相似文献   

18.
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca(2+) influx through store operated Ca(2+) channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pH(i)) and Ca(2+)([Ca(2+)](i)) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca(2+) influx, there was a modest decline of pH(i) measured by BCECF. Decreasing pH(i) below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pH(i) drop with thioacetate and bulk [Ca(2+)(i) rise with ionomycin was much less effective in inhibiting cell coupling than Ca(2+) influx. Moreover, clamping pH(i) with a weak acid and a weak base during Ca(2+) influx largely suppressed bulk pH(i) drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca(2+)(i) with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca(2+) influx. We concluded that local Ca(2+) elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca(2+) influx. To assess how Ca(2+) influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca(2+) influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca(2+) influx may be a more general phenomenon.  相似文献   

19.
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.  相似文献   

20.
Cell cycle in various types of cells and in early embryos is often accompanied by transient changes in the concentration of free cytosolic calcium. In the present study, using fluorescent indicator fura-2, we demonstrate that Ca(2+) oscillates cyclically with an amplitude of about 100 nM and a period of mitotic cycle in cell-free Xenopus egg cycling extracts. It peaks in early metaphase just preceding mitotic reactivation of Cdc2 kinase and MAPK and reaches a minimum in interphase. The source of Ca(2+) in the extracts is a particulate fraction containing egg intracellular Ca(2+) stores, since the addition of a calcium-mobilizing second messenger, inositol 1,4,5-trisphosphate (IP3), induced a transient increase in Ca(2+). The inclusion of heparin, an IP3 receptor antagonist, or ultrafiltration of the extracts prevented Ca(2+)-releasing activity of IP3. The depletion of Ca(2+) in the extracts by the calcium chelator BAPTA resulted in the blockade of cell cycle at different stages, depending on the time of drug administration. The addition of BAPTA late in interphase blocked cell cycle at mitotic entry in prophase, whereas its application in anaphase or telophase blocked the extracts in early interphase. BAPTA administration in metaphase before transition to anaphase brought about a metaphase-like arrest in the cycling extracts. Inhibition of IP3-induced calcium release by heparin also arrested cell cycle progression in the cycling extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号