首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Absolute DNA amounts of individual chloroplasts from mesophyll and epidermal cells of developing spinach leaves were measured by microspectrofluorometry using the DNA-specific stain, 4,6-diamidino-2-phenyl indole, and the bacterium, Pediococcus damnosus, as an internal standard. Values obtained by this method showed that DNA amounts of individual chloroplasts from mesophyll cells fell within a normal distribution curve, although mean DNA amounts changed during leaf development and also differed from the levels in epidermal chloroplasts. There was no evidence in the data of plastids containing either the high or low levels of DNA which would be indicative of discontinuous polyploidy of plastids, or of division occurring in only a small subpopulation of chloroplasts. By contrast, the distribution of nuclear DNA amounts in the same leaf tissues in which cell division was known to be occurring showed a clear bimodal distribution. We consider that the distribution of chloroplast DNA in the plastid population shows that there is no S-phase of chloroplast DNA synthesis, all chloroplasts in the population in young leaf cells synthesize DNA, and all chloroplasts divide.  相似文献   

2.
High-resolution images of the chlorophyll fluorescence parameter Fq'/Fm' from attached leaves of commelina (Commelina communis) and tradescantia (Tradescantia albiflora) were used to compare the responses of photosynthetic electron transport in stomatal guard cell chloroplasts and underlying mesophyll cells to key environmental variables. Fq'/Fm' estimates the quantum efficiency of photosystem II photochemistry and provides a relative measure of the quantum efficiency of non-cyclic photosynthetic electron transport. Over a range of light intensities, values of Fq'/Fm' were 20% to 30% lower in guard cell chloroplasts than in mesophyll cells, and there was a close linear relationship between the values for the two cell types. The responses of Fq'/Fm' of guard and mesophyll cells to changes of CO2 and O2 concentration were very similar. There were similar reductions of Fq'/Fm' of guard and mesophyll cells over a wide range of CO2 concentrations when the ambient oxygen concentration was decreased from 21% to 2%, suggesting that both cell types have similar proportions of photosynthetic electron transport used by Rubisco activity. When stomata closed after a pulse of dry air, Fq'/Fm' of both guard cell and mesophyll showed the same response; with a marked decline when ambient CO2 was low, but no change when ambient CO2 was high. This indicates that photosynthetic electron transport in guard cell chloroplasts responds to internal, not ambient, CO2 concentration.  相似文献   

3.
DAPI staining improved for quantitative cytofluorometry   总被引:5,自引:0,他引:5  
S Hamada  S Fujita 《Histochemistry》1983,79(2):219-226
DNA-DAPI complexes emit strong bluish white fluorescence when excited by ultraviolet light so that even very small amounts of DNA such as those in mitochondria, chloroplasts, and virus particles can be visualized. Moreover, the staining procedure with DAPI is very simple and requires no hydrolysis. However, DAPI staining was considered unsuitable for quantitative purpose; nonspecific cytoplasmic fluorescence, scattering of strong emission light, and fading of the fluorescence under UV excitation were major problems of DAPI staining in quantitative cytofluorometry. We found that (1) nonspecific cytoplasmic fluorescence could be eliminated by reducing the DAPI concentration to 50 ng/ml, (2) fluorescence decay was markedly decreased by adding electron donors and molecules containing SH radicals in the mounting media, and (3) light scattering became negligible after reducing the intensity of the excitation light. Thus satisfactory precision could be obtained in DNA quantification by epifluorescent cytophotometry on DAPI stained specimens.  相似文献   

4.
Antibodies were raised against individual polypeptides of the oxygen-evolving photosystem II (PSII) complex from mesophyll chloroplasts of Vicia faba (Long Pod). These antibodies were used to probe immunologically for the presence of the main structural components of the PSII complex in guard cell chloroplasts, using both immunofluorescence microscopy and Western blotting. Immunofluorescence of epidermal peels with antibodies raised against the extrinsic 33 kilodalton polypeptide, as well as the 47 and the 44 kilodalton subunits and the light-harvesting chlorophyll a/b protein, resulted in intense fluorescence indicating the presence of these polypeptide components in guard cell chloroplasts. Results obtained with Western blot analysis showed that the relative amounts of the 33 kilodalton and light-harvesting complex protein polypeptides are between 60 and 80% of that found in mesophyll cells (on chlorophyll basis). These results provide evidence for the existence of structural components associated with PSII activity in guard cell similar to those of mesophyll chloroplasts.  相似文献   

5.
H. Kuroiwa  M. Sugai  T. Kuroiwa 《Protoplasma》1988,146(2-3):89-100
Summary The fate of the chloroplasts and chloroplast nuclei (cp-nuclei) was followed during spermatogenesis in the fernPteris vittata L. by epifluorescence microscopy after staining with 4-6-diamidino-2-phenylindole (DAPI) and by quantitation of chloroplast DNA (cp-DNA) by fluorimetry using a video intensified microscope photon counting system (VIMPICS). The spores were grown on solid medium that contained antheridiogen (Anptd), and formed an antheridium initial on the protonema cell. The antheridium initial divided and produced 16 spermatocytes and 3 surrounding cells. The chloroplasts in the spermatocytes decreased in volume as cell division was repeated, until finally the volume of each chloroplast was 1/15 of that of the primary chloroplasts. The DNA content of the chloroplasts was also reduced to 1/5 of the original value and when the sperm matured, the fluorescence of cp-DNA disappeared. In the 16-cell spermatocyte, the recognition of the fluorescence of chlorophyll in the chloroplasts with a green excitation filter became difficult. But, the plastids could be observed until the final stage of the sperm. From these observations, it appears that there are two steps in the metamorphosis of chloroplasts during spermatogenesis in the fern. The first step involves the decrease in the volume of chloroplasts, accompanied by reduction of the DNA content, and the second step involves the change of the physical state of chloroplasts to amyloplasts and the disappearance of the cp-DNA from the amyloplasts.  相似文献   

6.
During development of the first leaf of breadwheat (Triticum aestivum L.) the number of chloroplasts per mesophyll cell increases between three- and four-fold. To establish if chloroplast replication is accompanied by endoreduplication, the nuclear DNA content of the cells was determined by chemical assay of isolated nuclei from mesophyll protoplasts and by microdensitometry of nuclei in mesophyll tissue. The DNA content of the nuclei was constant (27 to 32 pg) at each phase of chloroplast replication. Approximately 93% of the cells had a nuclear DNA content close to the 2C value of 32 pg. It is concluded that chloroplast replication is not dependent on nuclear endoreduplication in seedling leaves of wheat.  相似文献   

7.
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post‐meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI‐based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring‐shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20–750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20‐fold even within individual organelles, with average values between 2.6‐fold and 6.7‐fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70–130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600–3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed‐field electrophoresis, restriction of high‐molecular‐weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single‐stranded and double‐stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.  相似文献   

8.
Dimorphic chloroplasts of Zea mays L. cv. GH5004 from bundle sheath and mesophyll cells contained similar amounts of DNA, while bundle sheath chloroplasts contained twice the number of nucleoids compared to mesophyll chloroplasts. On average bundle sheath nucleoids were half the size of mesophyll nucleoids and contained half as much DNA. Electron microscope autoradiography of the chloroplasts showed that the nucleoid DNA is associated with the thylakoids and in the case of mesophyll chloroplasts preferentially with the grana. These observations suggest that the differences in nucleoid distribution may be due to differences in membrane morphology, with the small nucleoids of agranal bundle sheath chloroplasts being widely dispersed.  相似文献   

9.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

10.
A. Lüttke  S. Bonotto 《Planta》1981,153(6):536-542
Chloroplast DNA (cpDNA) distribution in the giant unicellular, uninucleate alga Acetabularia mediterranea was analyzed with the DNA-specific fluorochrome 4'6-diamidino-2-phenylindole (DAPI) at various stages of the cell cycle. The number of chloroplasts exhibiting DNA/DAPI fluorescence changes during the cell's developmental cycle: (1) all chloroplasts in germlings contain DNA; (2) the number of plastids with DNA declines during polar growth of the vegetative cell; (3) it increases again prior to the transition from the vegetative to the generative phase; (4) several nucleoids of low fluorescence intensity are present in the chloroplasts of the gametes. The temporal distribution of the number of chloroplasts with DNA appears to be linked to the different mode of chloroplast division and growth during the various stages of development. The chloroplast cycle in relation to the cell cycle is discussed.Abbreviations cpDNA chloroplast DNA - DAPI 4,6-diamidino-2-phenylindole  相似文献   

11.
Using cultured cells of the hornwortAnthoceros punctatus, the change in the relative chloroplast DNA content in each stage of chloroplast division was investigated to clarify the relationship between the division cycle of a chloroplast and a cell nucleus. Samples of cultured cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) and then observed with an epifluorescence microscope and a chromosome image analyzing system (CHIAS). A chloropiast in cultured cells duplicated DNA with an increase in size. When a chloroplast began to divide, it was constricted in the middle, taking a dumbbell shape, and then divided into two daughter chloroplasts. In cultured cells of this species, the pattern of quantitative change of chloroplast DNA, that is, the DNA replication pattern of chloroplasts, corresponded to that of cell nuclear DNA in mitosis.  相似文献   

12.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

13.
High-resolution imaging of chlorophyll a fluorescence from intact tobacco leaves was used to compare the quantum yield of PSII electron transport in the chloroplasts of guard cells with that in the underlying mesophyll cells. Transgenic tobacco plants with reduced amounts of Rubisco (anti-Rubisco plants) were compared with wild-type tobacco plants. The quantum yield of PSII in both guard cells and underlying mesophyll cells was less in anti-Rubisco plants than in wild-type plants, but closely matched between the two cell types regardless of genotype. CO2 assimilation rates of anti-Rubisco plants were 4.4 micromol m(-2) s(-1) compared with 17.3 micromol m(-2) s(-1) for the wild type, when measured at a photon irradiance of 1000 micromol m(-2) s(-1) and ambient CO2 of 380 micromol mol(-1). Despite the large difference in photosynthetic capacity between the anti-Rubisco and wild-type plants, there was no discernible difference in the rate of stomatal opening, steady-state stomatal conductance or response of stomatal conductance to ambient CO2 concentration. These data demonstrate clearly that the commonly observed correlation between photosynthetic capacity and stomatal conductance can be disrupted in the long term by manipulation of photosynthetic capacity via antisense RNA technology. It was concluded that stomatal conductance is not directly determined by the photosynthetic capacity of guard cells or the leaf mesophyll.  相似文献   

14.
Three features of chloroplast DNA (cpDNA) in plastids isolated from Acetabularia mediterranea (acetabulum) were analyzed after staining the organelles with the fluorochrome 4′6-diamidino-2-phenyl indole (DAPI): (1) number of chloroplasts exhibiting DNA fluorescence, (2) number of nucleoids per plastid, and (3) nucleoid morphology. In vegetative Acetabularia cells only half of the total chloroplast population comprising several millions displayed the whitish-blue fluorescence of the DNA/DAPI complex. This percentage remained stable independent of whether cells were grown in supplemented natural sea water or enriched synthetic sea water. A single nucleoid, widely differing in size and morphology among the organelles, was characteristic of 76–81% of chloroplasts with DNA. Less than 20% contained two nucleoids, and in rare cases three or four nucleoids were present. The pattern of nucleoid numbers followed a Poisson distribution in one experiment, if calculated with the intrinsic mean of the observed data. In two other experiments, however, a significant difference existed between observed and expected values for a Poisson distribution according to the Chisquared test. After secondary enlargement of portions of the negatives, the nucleoids’substructure was disclosed and found to consist of brightly fluorescent spots interspersed by unstained regions The lack of cpDNA in Acetabularia cells appears to be brought about by (1) the polarized pattern of growth and translation confined to the apical region of the single cell and (2) the cpDNA arrangement in a single nucleoid acentrically located in the organelle. A scheme for the evolution of a chloroplast population having plastids without DNA is proposed. In theory the lack of cpDNA could arise in each plant, since chloroplasts never evolved a mitotic-like spindle to ensure the equal distribution of genetic material. The different nucleoid arrangement in most other plants, however, efficiently counteracts this ‘carelessness of nature’  相似文献   

15.
Abstract. In Oxalis , epidermal cells on both the adaxial and abaxial surface of the leaf concentrated light within the leaf by a lens mechanism. Focal lengths of epidermal cells were estimated using two methods: they were calculated from radius of curvature measurements taken from individual epidermal cells, and were measured directly in agarose replicas of the leaf surface. In the three species of Oxalis examined, light that was incident upon the adaxial leaf surface was concentrated within the palisade, whereas light that was incident upon the abaxial leaf surface was concentrated within the spongy mesophyll. Using sensiometric analysis, theoretically maximal focal intesifications were measured in leaf replicas at the focal maximum and at intermediate positions corresponding to the mid-region of the palisade and spongy mesophyll tissues. Focal intensifications ranged from 2.2 to 10.4 times incident light at the focal maximum, and 1.3 to 4.5 in the palisade or spongy mesophyll layers. Elimination of epidermal focussing, by covering the leaf surface with a thin layer of mineral oil, strongly affected chlorophyll fluorescence induction curves resulting in a decrease of 10–40% in the initial (F0) and variable fluorescence (Fv). These results are consistent with the interpretation that the chloroplasts were adapted to their light microenvironment within the leaf and that focussing by the epidermis channelled light to a population of chloroplasts that were adapted to high light.  相似文献   

16.
Recent studies have shown that coleoptile chloroplasts operate the xanthophyll cycle, and that their zeaxanthin concentration co-varies with their sensitivity to blue light. The present study characterized the distribution of photosynthetic pigments in thylakoid pigment–protein complexes from dark-adapted and light-treated coleoptile and mesophyll chloroplasts, the low temperature fluorescence emission spectra, and the rates of PS I and PS II electron transport in both types of chloroplasts from 5-day-old corn seedlings. Pigments were extracted from isolated PS I holocomplex, LHC IIb trimeric and LHC II monomeric complexes and analyzed by HPLC. Chlorophyll distribution in coleoptile thylakoids showed 31% of the total collected Chl in PS I and 65% in the light harvesting complexes of PS II. In mesophyll thylakoids, the values were 44% and 54%, respectively. Mesophyll and coleoptile PS I holocomplexes differed in their Chl t a/Chl t b ratios (8.1 and 6.1, respectively) and -carotene content. In contrast, mesophyll and coleoptile LHC IIb trimers and LHC II monomers had similar Chl t a/Chl t b ratios and -carotene content. The three analyzed pigment–protein complexes from dark-adapted coleoptile chloroplasts contained zeaxanthin, whereas there was no detectable zeaxanthin in the complexes from dark-adapted mesophyll chloroplasts. In both chloroplast types, zeaxanthin and antheraxanthin increased markedly in the three pigment–protein complexes upon illumination, while violaxanthin decreased. In mesophyll thylakoids, zeaxanthin distribution as a percentage of the xanthophyll cycle pool was: LHC II monomers > LHC IIb trimers > PS I holocomplex, and in coleoptile thylakoids, it was: LHC IIb trimers > LHC II monomers = PS I holocomplex. Low temperature (77 K) fluorescence emission spectra showed that the 686 nm emission of coleoptile chloroplasts was approximately 50% larger than that of mesophyll chloroplasts when normalized at 734 nm. The pigment and fluorescence analysis data suggest that there is relatively more PS II per PS I and more LHC I per CC I in coleoptile chloroplasts than in mesophyll chloroplasts. Measurements of t in vitro uncoupled photosynthetic electron transport showed approximately 60% higher rates of electron flow through PS II in coleoptile chloroplasts than in mesophyll chloroplasts. Electron transport rates through PS I were similar in both chloroplast types. Thus, when compared to mesophyll chloroplasts, coleoptile chloroplasts have a distinct PS I pigment composition, a distinct chlorophyll distribution between PS I and PS II, a distinct zeaxanthin percentage distribution among thylakoid pigment–protein complexes, a higher PS II-related fluorescence emission, and higher PS II electron transport capacity. These characteristics may be associated with a sensory transducing role of coleoptile chloroplasts.  相似文献   

17.
The chlorophyll fluorescence induction curves from mesophyll and guard cell chloroplasts of Saxifraga cernua, including both the fast (O to P, the transients involved in the rise in variable fluorescence) and slow (P to steady state fluorescence due to quenching) components, were characterized over a range of excitation intensities using microspectrophotometry (with epi-lumination) equipped with apertures designed to eliminate cross contamination of the fluorescence signal between the two chloroplast types. At low excitation intensities, the fast fluorescence kinetics from guard cell plastids showed an extended I to D phase and a more rapid appearance of P while minimal quenching from P to steady state fluorescence was observed compared to the transients from mesophyll chloroplasts suggesting a lower activity of photochemical (electron movement via carriers between donor and acceptor sites) and nonphotochemical (such as membrane conformational changes) events which regulate the fluorescence induction curve kinetics. As the excitation intensity was increased, the quenching rates of guard cells were faster at initiating conditions for photophosphorylation and the fast and slow fluorescence kinetics from guard cells resembled those of the mesophyll cells.

Guard cell chloroplasts of S. cernua from intact epidermal peels showed a low temperature (77 K) fluorescence emission spectrum having three major peaks (at 685, 695, and 730 nanometers when excited at 440 nanometers) which were qualitatively similar to those in the spectrum obtained from mesophyll tissue.

These data suggest that S. cernua guard cell chloroplast photosystems I and II contribute to light-dependent stomatal activity only at high light intensities.

  相似文献   

18.
Heterocysts and vegetative cells of the filamentous nitrogen-fixing Anabaena azollae isolated from the apex to the basal leaf cavities of Azolla filiculoides were examined by epifluorescent microscope after fluorochrome staining. Acridine orange (AO), DAPI, and chromomycin fluorochromes were used in order to evidence total DNA content and respectively, A + T and G + C bases. Measurements of fluorescence intensities were made on photographic prints by the automatic image analysis system Quantimet 970. Heterocysts contained higher amounts of DNA than did vegetative cells, and their content strongly increased in the basal leaf cavities. The heterocyst DAPI brightness was quite uniform, whereas in vegetative cells DAPI brightness increased from the apex to the basal groups. In vegetative cells from the apex to the median group, the percentage of DAPI brightness was 60-85% with respect to AO brightness, whereas in heterocysts of the same groups DAPI brightness was 40-50% with respect to AO brightness. In the basal group, brightness due to DAPI staining was comparable with those of previous group both in heterocysts and in vegetative cells, whereas chromomycin brightness increased strongly in heterocysts. These data show that heterocyst changes its DNA content and composition in the basal leaf cavities, suggesting that its lifetime is not completely over.  相似文献   

19.
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

20.
Lipid compositions of undifferentiated maize (Zea mays) chloroplasts, capable of fixing CO2, were compared with the lipid compositions of mature chloroplasts, which do not fix CO2, located in both the mesophyll and bundle sheath cells. The major lipids found in all three chloroplast types were the glycolipids, monogalactosyl diglyceride and digalactosyl diglyceride, followed by decreasing amounts of sulfolipid, phosphatidyl glycerol, phosphatidyl choline, phosphatidyl inositol, and diphosphatidyl glycerol. Quantitative differences in lipid components were observed among the chloroplast types. The mesophyll and bundle sheath maize chloroplasts differed in their chlorophyll a/chlorophyll b ratios (2.27 and 4.13 respectively) and their content of glycolipid relative to chlorophyll (51.8% glycolipid to 20.9% chlorophyll and 84.5% glycolipid to 10.1% chlorophyll respectively). A comparison between the lipid compositions of maize mesophyll chloroplasts and mesophyll chloroplasts obtained from spinach, sugar beet, and tobacco showed many similarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号