首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contents     
The thermotropic behavior of mixtures of cholesterol with phosphatidylserine (PS) or galactocerebroside was investigated.In PS/cholesterol mixtures at low cholesterol concentrations only one peak in the thermograms is obtained. At about Xchol = 0.3 another peak at higher temperatures is also seen, this peak stems from phase transition of almost pure cholesterol phase. However, increase of Xchol results in further incorporation of cholesterol into the mixture.In galactocerebroside-cholesterol mixtures above Xchol 0.4, at least two domains differing in cholesterol content and thermotropic properties coexist.In the presence of cholesterol even at 1:1 molar ratios the phosphatidylserine or galactocerebroside are still undergoing melting.  相似文献   

2.
Xiao-Min Gong  Tal Lev  Chanoch Carmeli 《BBA》2009,1787(2):97-104
Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster FX, located on the core subunits PsaA/B to iron-sulfur clusters FA/B on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of FX cluster were studied by X-ray absorption spectroscopy (EXAFS) and transient spectroscopy. The structure of FX was determined in PS I lacking clusters FA/B by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp PCC 6803. PsaC-deficient mutant cells assembled the core subunits of PS I which mediated electron transfer mostly to the phylloquinone. EXAFS analysis of the iron resolved a [4Fe-4S] cluster in the native PsaC-deficient PS I. Each iron had 4 sulfur and 3 iron atoms in the first and second shells with average Fe-S and Fe-Fe distances of 2.27 Å and 2.69 Å, respectively. In the C565S/D566E serine mutant, one of the irons of the cluster was ligated to three oxygen atoms with Fe-O distance of 1.81 Å. The possibility that the structural changes induced an increase in the reorganization energy that consequently decreased the rate of electron transfer from the phylloquinone to FX is discussed.  相似文献   

3.
4.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

5.
Current structural models indicate that the D1 and D2 polypeptides of the Photosystem two reaction center complex (PS II RC) each span the thylakoid membrane five times. In order to assess the importance of the lumenal extrinsic loop that connects transmembrane helices I and II of D1 we have constructed five deletion mutants and two double mutants in the cyanobaterium Synechocystic sp. PCC 6803. Four of the deletion mutants (59–65, 69–74, 79–86 and 109–110) are obligate photoheterotrophs unable to accumulate D1 in the membrane as assayed by immunoblotting experiments or pulse-labelling experiments using [35S]-methionine. In contrast deletion mutant 100 which lacks A100 behaved very similarly to the WT control strain in terms of photoautotrophic growth rate, saturated rates of oxygen evolution, flash-induced oxygen evolution, fluorescence induction and decay, and thermoluminescence. 100 is the first example of an internal deletion on the lumenal side of the D1 polypeptide that is benign to photosystem two function. Double mutant D103G/E104A also behaves similarly to the WT control strain leading to the conclusion that residues D103 and E104 are unlikely to be involved in ligating the metal ions Mn or Ca2+, which are needed for photosynthetic oxygen evolution. Double mutant, G109A/G110A, was constructed to assess the significance of this GlyGly motif which is also conserved in the L subunit of purple bacterial reaction centres. The G109A/G110A mutant is able to evolve oxygen at approximately 50–70% of WT rates but is unable to grow phatoautotrophically apparently because of an enhanced sensitivity to photoinactivation than the WT control strain. A photoautotropic revertant was isolated from this strain and shown to result from a mutation that restored the WT codon at position 109. Pulse-chase experiments in cells using [35S]-methionine showed that resistance to photoinhibition in the revertant correlated with an enhanced rate of incorporation of D1 into the membrane compared to mutant G109A/G110A. The sensitivity to photoinhibition shown by the G109A/G110A mutant is therefore consistent with a perturbation to the D1 repair cycle possibly at the level of D1 synthesis or incorporation of D1 into the PS II complex.Abbreviations DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Hepes- 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes- 4-morpholineethanesulfonic acid - PCR- polymerase chain reaction - PS II- Photosystem II - TL- thermoluminescence - PQ- plastoquinone - PS II- absence of PS II activity - PS- incapable of photoautotrophic growth - QA- primary plastoquinone electron acceptor - QB- secondary plastoquinone electron acceptor - SDS- sodium dodecyl sulphate  相似文献   

6.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (?o) and liquid-disordered (?d) phases display significantly different polarities. Moreover, in the ?o phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 °C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

7.
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct.  相似文献   

8.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

9.
Sterols impart significant changes to the biophysical properties of lipid bilayers. In this regard the impact of cholesterol on membrane organization and dynamics is particularly well documented and serves for comparison with other sterols. However, the factors underlying the molecular evolution of cholesterol remain enigmatic. To this end, cholesterol attenuates membrane perturbation by the so-called antimicrobial peptides (AMPs), produced ubiquitously by eukaryotic cells to combat bacterial infections by compromising the permeability barrier function of the microbial target membranes. In the present study, we addressed the effects of cholesterol, ergosterol, and lanosterol on the membrane association of two structurally and functionally diverse AMPs viz. LL-37(F27W) and temporin L (TemL) using fluorescence spectroscopy. Interestingly, sterol concentration dependent effects on the membrane association of these peptides were observed. At XSterol = 0.5 cholesterol was most effective in reducing the membrane intercalation of both LL-37(F27W) and TemL, the corresponding efficiencies of the three sterols decreasing as cholesterol > lanosterol ≥ ergosterol, and cholesterol > lanosterol > ergosterol. It is conceivable that part of the selection pressure for the chemical evolution of cholesterol may have derived from the ability to protect the AMP-secreting host cell from the membrane damaging action of the antimicrobial peptides.  相似文献   

10.
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca(2+)-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca(2+)-independent membrane damage by Lys49-PLA(2)s.  相似文献   

11.
The complex formation of porphyrins with DNA leads to changes of stability of DNA. In the present study we investigated binding properties and the thermodynamic parameters of a water-soluble, cationic planar Cu(II)-containing meso-tetrakis(4-N-butyl-pyridiniumyl)porphyrin [CuTButPyP4] and nonplanar Co(II)-containing meso-tetrakis(4-N-butyl-pyridiniumyl)porphyrin [CoButPyP4] with calf thymus DNA in the presence of divalent manganese ions. For displaying the changes of thermodynamic parameters (Tm and ΔT) the melting curves of DNA-porphyrin complexes in the presence of Mn2+ ions have been obtained. The enthalpy (ΔH) of helix-coil transition has been also evaluated. It was shown that the binding of ions to DNA proceeds in two stages depending on the manganese/DNA phosphates molar ratio [Mn]/[P]. At the first stage (0.001 < [Mn]/[P] < 1), the interaction of manganese ions with DNA phosphates occurs, causing an additional screening of their negative charge and the stabilization of the double helix. As a result, the best conditions for intercalation of CuTButPyP4 or of peripheral rings of CoButPyP4 occur. The significant increase of Tm, but less changes of ΔT were observed. At the second stage (1 < [Mn]/[P] < 4), the ions interact with both the phosphates and the nitrogen bases of DNA. At this stage, it is possible for the manganese ion to coordinate simultaneously to the oxygen atom of the phosphate and the neighboring base of DNA. At a higher [Mn]/[P] ratio, the destabilization of the double helix begins, and partial breakage of the hydrogen bonds between the nitrogen bases occurs. Respectively the destabilization of DNA in the presence of both porphyrins takes place.  相似文献   

12.
Carbonic Anhydrase Activities in Pea Thylakoids   总被引:2,自引:1,他引:1  
Pea thylakoids with high carbonic anhydrase (CA) activity (average rates of 5000 µmol H+ (mg Chl)–1 h–1 at pH 7.0) were prepared. Western blot analysis using antibodies raised against the soluble stromal -CA from spinach clearly showed that this activity is not a result of contamination of the thylakoids with the stromal CA but is derived from a thylakoid membrane-associated CA. Increase of the CA activity after partial membrane disintegration by detergent treatment, freezing or sonication implies the location of the CA in the thylakoid interior. Salt treatment of thylakoids demonstrated that while one part of the initial enzyme activity is easily soluble, the rest of it appears to be tightly associated with the membrane. CA activity being measured as HCO3 dehydration (dehydrase activity) in Photosystem II particles (BBY) was variable and usually low. The highest and most reproducible activities (approximately 2000 µmol H+ (mg Chl)–1 h–1) were observed in the presence of detergents (Triton X-100 or n-octyl--D-glucopyranoside) in low concentrations. The dehydrase CA activity of BBY particles was more sensitive to the lipophilic CA inhibitor, ethoxyzolamide, than to the hydrophilic CA inhibitor, acetazolamide. CA activity was detected in PS II core complexes with average rate of 13,000 µmol H+ (mg Chl)–1 h–1 which was comparable to CA activity in BBY particles normalized on a PS II reaction center basis.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Changes in composition of membrane proteins in Synechocystis PCC 6803 induced by the shift of light regime for photosynthetic growth were studied in relation to the regulation of PS I/PS II stoichiometry. Special attention was paid to the changes in abundance of proteins of PS I and PS II complexes. Composition was examined using a LDS-PAGE and a quantitative enzyme immunoassay. Abundance of PsaA/B polypeptides and the PsaC polypeptide of the PS I complex, on a per cell basis, increased under the light regime exciting preferentially PS II and decreased under the light regime exciting mainly PS I. Similar changes were observed with polypeptides of 18.5, 10 and 8.5 kDa. The abundance of other proteins associated with membranes, including PsbA polypeptide of the PS II complex, was fairly constant irrespective of light regime. These results are consistent with our previous observations with other strains of cyanophytes (Anabaena variabilis M2 and Synechocystis PCC 6714) that PS I is the variable component in changes in PS I/PS II stoichiometry in response to changing light regimes for photosynthesis.Abbreviations CBB Coomassie brilliant blue - Chl chlorophyll - EIA enzyme immunoassay - LDS lithium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - PS photosystem - PVDF polyvinylidene difluoride  相似文献   

14.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

15.
The role of mitochondrial membrane potential in ischemic heart failure   总被引:1,自引:0,他引:1  
The molecular events occurring during myocardial infarction and cardioprotection are described with an emphasis on the changes of the mitochondrial membrane potential (ΔΨm). The low ΔΨm values of the normal beating heart (100–140 mV) are explained by the allosteric ATP-inhibition of cytochrome c oxidase (CcO) through feedback inhibition by ATP at high [ATP]/[ADP] ratios. During ischemia the mechanism is reversibly switched off by signaling through reactive oxygen species (ROS). At reperfusion high ΔΨm values cause a burst of ROS production leading to apoptosis and/or necrosis. Ischemic preconditioning is suggested to cause additional phosphorylation of CcO, protecting the enzyme from immediate dephosphorylation via ROS signaling.  相似文献   

16.
Photosystem I (PS I) converts the energy of light into chemical energy via transmembrane charge separation. The terminal electron transfer cofactors in PS I are three low-potential [4Fe-4S] clusters named FX, FA and FB, the last two are bound by the PsaC subunit. We have modelled the FA and FB binding sites by preparing two apo-peptides (maquettes), sixteen amino acids each. These model peptides incorporate the consensus [4Fe-4S] binding motif along with amino acids from the immediate environment of the iron-sulfur clusters FA and FB. The [4Fe-4S] clusters were successfully incorporated into these model peptides, as shown by optical absorbance, EPR and Mössbauer spectroscopies. The oxidation-reduction potential of the iron-sulfur cluster in the FA-maquette is − 0.44 ± 0.03 V and in the FB-maquette is − 0.47 ± 0.03 V. Both are close to that of FA and FB in PS I and are considerably more negative than that observed for other [4Fe-4S] model systems described earlier (Gibney, B. R., Mulholland, S. E., Rabanal, F., and Dutton, P. L. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 15041-15046). Our optical data show that both maquettes can irreversibly bind to PS I complexes, where PsaC-bound FA and FB were removed, and possibly participate in the light-induced electron transfer reaction in PS I.  相似文献   

17.
Core antenna and reaction centre of photosytem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(−), 683-685(−), 696-697(−), and 711(−) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700+A1 or 3P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on PA, whereas the cation is localized most likely on PB.  相似文献   

18.
Cardiac excitation-contraction coupling is initialized by the release of Ca from the sarcoplasmic reticulum (SR) in response to a sudden increase in local cytosolic [Ca] ([Ca]i) within the junctional cleft. We have tested the hypothesis that functional ryanodine receptor (RyR) regulation plays a major role in the regulation of myocyte Ca. A mathematical model with unique characteristics was used to simulate Ca homeostasis. Specifically, the model was designed to accurately represent the SR [Ca]-dependence of release from a variety of experimentally produced data sets. The simulated data for altered RyR Ca sensitivity demonstrated a regulatory feedback loop that resulted in the same release at lower [Ca]SR. This suggests that the primary role of myocyte RyR regulation may be to decrease SR [Ca] without decreasing the size of the [Ca]i transient. The model results suggest that this action moderates the increased SR [Ca] observed with adrenergic stimulation and may keep the [Ca]SR below the threshold for delayed afterdepolarizations and arrhythmia. However, increased Ca affinity of the RyR increased the probability of delayed afterdepolarizations when heart failure was simulated. We conclude that RyR regulation may play a role in preventing arrhythmias in healthy myocytes but that the same regulation may have the opposite effect in chronic heart failure.  相似文献   

19.
PS I core proteins are expected to interact with the electron donor proteins plastocyanin or cytochrome c 6. To investigate the role of the luminal H loop of PsaB in the assembly and function of the PS I complex, we generated 15 deletion and repetition mutations in the H loop of the PsaB protein from Synechocystis sp. PCC 6803. The mutant strains differed in their photoautotrophic growth. The PS I proteins could not be detected in the membranes of mutants in which the N438–E448, I453–T464, or S500–G512 region was deleted from the PsaB protein, indicating the essential role of these segments in proper folding of the PsaB protein. Mutants with partial or complete deletion of the L469–D496 segment contained the PS I proteins. These results indicate that the regions near the transmembrane helices are more important for the assembly of PsaB than the middle region of the H loop. The L469-D496 segment in the H loop of PsaB is dispensable in the interaction between the PS I complex and the soluble donor proteins. These results suggested that sections of the H loop of PsaB are crucial for the structural integrity of the PsaB protein.  相似文献   

20.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号