首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helt AM  Funk JO  Galloway DA 《Journal of virology》2002,76(20):10559-10568
The human papillomavirus (HPV) type 16 E7 oncoprotein must inactivate the retinoblastoma tumor suppressor (Rb) pathway to bypass G(1) arrest. However, E7 C-terminal mutants that were able to inactivate Rb were unable to bypass DNA damage-induced G(1) arrest and keratinocyte senescence, suggesting that the E7 C terminus may target additional G(1) regulators. The E7 C-terminal mutant proteins E7 CVQ68-70AAA and E7 Delta79-83 (deletion of positions 79 through 83) were further tested in several models of cell cycle arrest associated with elevated levels of p21. C-terminal mutations rendered E7 unable to induce S phase and endoreduplication in differentiated keratinocytes and rendered it less efficient in delaying senescence of human mammary epithelial cells. Interestingly, when cell cycle arrest was induced with a peptide form of p21, the E7 C-terminal mutants were deficient in overcoming arrest, whereas a mutant defective in Rb binding was competent in inhibiting G(1) arrest. These results suggest that the inactivation of both p21 and Rb by E7 contributes to subversion of cell cycle control in normal human epithelia but that neither p21 nor Rb inactivation alone is sufficient.  相似文献   

2.
The p53 tumor suppressor protein can induce both cell cycle arrest and apoptosis in DNA-damaged cells. In human carcinoma cell lines expressing wild-type p53, expression of E7 allowed the continuation of full cell cycle progression following DNA damage, indicating that E7 can overcome both G1 and G2 blocks imposed by p53. E7 does not interfere with the initial steps of the p53 response, however, and E7 expressing cells showed enhanced expression of p21(waf1/cip1) and reductions in cyclin E- and A-associated kinase activities following DNA damage. One function of cyclin-dependent kinases is to phosphorylate pRB and activate E2F, thus allowing entry into DNA synthesis. Although E7 may substitute for this activity during cell division by directly targeting pRB, continued cell cycle progression in E7-expressing cells was associated with phosphorylation of pRB, suggesting that E7 permits the retention of some cyclin-dependent kinase activity. One source of this activity may be the E7-associated kinase, which was not inhibited following DNA damage. Despite allowing cell cycle progression, E7 was unable to protect cells from p53-induced apoptosis, and the elevated apoptotic response seen in these cells correlated with the reduction of cyclin A-associated kinase activity. It is possible that inefficient cyclin A-dependent inactivation of E2F at the end of DNA synthesis contributes to the enhanced apoptosis displayed by E7-expressing cells.  相似文献   

3.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

4.
Saudan P  Vlach J  Beard P 《The EMBO journal》2000,19(16):4351-4361
Adeno-associated virus (AAV) has an antiproliferative action on cells. We investigated the effect of the AAV replication proteins (Rep) on the cell division cycle using retroviral vectors. Rep78 and Rep68 inhibited the growth of primary, immortalized and transformed cells, while Rep52 and Rep40 did not. Rep68 induced cell cycle arrest in phases G(1) and G(2), with elevated CDK inhibitor p21 and reduced cyclin E-, A- and B1-associated kinase activity. Rep78-expressing cells were also impaired in S-phase progression and accumu lated almost exclusively with hypophosphorylated retinoblastoma protein (pRb). The differences between Rep78 and Rep68 were mapped to the C-terminal zinc finger domain of Rep78. Rep78-induced S-phase arrest could be bypassed by adenoviral E1A or papillomaviral E7 proteins but not by E1A or E7 mutants unable to bind pRb. Rb(-/-) primary mouse embryonic fibroblasts displayed a strongly reduced S-phase arrest when challenged with Rep78, compared with matched Rb(+/+) controls. These results suggest that physiological levels of active pRb can interfere with S-phase progression. We propose that the AAV Rep78 protein arrests cells within S-phase by a novel mechanism involving the ectopic accumulation of active pRb.  相似文献   

5.
To evaluate the role of the MEK/ERK pathway in NSCLC survival, we analyzed NSCLC cell lines that differed in tumor histology and status of p53, Rb, and K-ras. Constitutive ERK1/2 activity was demonstrated in 17 of 19 cell lines by maintenance of ERK1/2 phosphorylation with serum deprivation. Phosphorylation of ERK1/2 correlated with phosphorylation of MEK1/2 and p90RSK, but was inversely correlated with phosphorylation of c-Raf at S259. With serum deprivation, the MEK inhibitors, PD98059 and U0126, inhibited ERK1/2 activity but did not increase apoptosis. PD98059 and U0126 induced cell cycle arrest in G(0)/G(i) in cells with the highest levels of ERK1/2 activity, which correlated with induction of p27 but not p21. To confirm the cytostatic response to MEK inhibitors, we performed transient transfections with dominant negative forms of MEK or ERK. Surprisingly, dominant negative MEK and ERK mutants increased apoptosis without affecting cell cycle or p27 levels. When combined with paclitaxel, MEK inhibitors had no effect on apoptosis. In contrast, dominant negative ERK2 potentiated paclitaxel-induced apoptosis. Our studies show that constitutive ERK1/2 activity in NSCLC cells promotes cellular survival and chemotherapeutic resistance. Moreover, our data are the first to demonstrate divergent cellular responses to inhibition of the MEK/ERK pathway by small molecule inhibitors or dominant negative mutants.  相似文献   

6.
It is believed that Rb blocks G1-S transition by inhibiting expression of E2F regulated genes. Here, we report that the effects of E2F repression lag behind the onset of G1 cell cycle arrest in timed Rb reexpression experiments. In comparison, kinase inhibitor p27Kip1 protein accumulates with a faster kinetics. Conversely, Rb knockout leads to faster p27 degradation. Rb interacts with the N terminus of Skp2, interferes with Skp2-p27 interaction, and inhibits ubiquitination of p27. Disruption of p27 function or expression of the Skp2 N terminus prevents Rb from causing G1 arrest. A full-penetrance, inactive Rb mutant fails to interfere with Skp2-p27 interaction but, interestingly, a partial-penetrance Rb mutant that is defective for E2F binding retains full activity in inhibiting Skp2-p27 interaction and can induce G1 cell cycle arrest with wild-type kinetics. These results identify an Rb-Skp2-p27 pathway in Rb function, which may be involved in inhibition of tumor progression.  相似文献   

7.
The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity.  相似文献   

8.
High levels of the p53 tumor suppressor protein can block progression through the cell cycle. A model system for the study of the mechanism of action of wild-type p53 is a cell line (T64-7B) derived from rat embryo fibroblasts transformed by activated ras and a temperature-sensitive murine p53 gene. At 37 to 39 degrees C, the murine p53 protein is in a mutant conformation and the cells actively divide, whereas at 32 degrees C, the protein has a wild-type conformation and the cells arrest in the G1 phase of the cell cycle. Wild-type simian virus 40 large T antigen and a variety of T-antigen mutants were assayed for the ability to bypass the cell cycle block effected by the wild-type p53 protein to induce colony formation at 32 degrees C. The results indicate that two functions within the amino terminus of T antigen are essential to induce cell growth: (i) the ability to bind to the retinoblastoma protein, Rb, and (ii) the presence of a domain in the first exon that appears to interact with the cellular protein, p300. Thus, the cell cycle arrest triggered by wild-type p53 may be overcome by formation of a T-antigen complex with Rb, p300, or both that could then function to either remove p53-mediated negative growth regulatory signals or promote a positive cell growth signal. Surprisingly, T antigen-p53 complexes are not required to overcome the temperature-sensitive p53 block to the cell cycle in these cells. These data suggest that simian virus 40 T antigen associated with Rb, p300, or both proteins can communicate in a cell with the functions of the wild-type p53 protein.  相似文献   

9.
10.
Liu W  Dai Q  Lu N  Wei L  Ha J  Rong J  Mu R  You Q  Li Z  Guo Q 《Biochimie et biologie cellulaire》2011,89(3):287-298
We recently established that LYG-202, a new flavonoid with a piperazine substitution, exerts an anti-tumor effect in vivo and in vitro. In the present study, we demonstrate that LYG-202 induces G1/S phase arrest and apoptosis in human colorectal carcinoma HCT-116 cells. Data showed that the blockade of the cell cycle was associated with increased p21(WAF1/Cip1) and Rb levels and reduced expression of cyclin D1, cyclin E, and CDK4. Moreover, PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, and an increased ratio of Bax/Bcl-2 were detected in LYG-202-induced apoptosis. Additionally, activation of p53 resulted in the up-regulation of its downstream targets PUMA and p21(WAF1/Cip1), as well as the down-regulation of its negative regulator MDM2, suggesting that the p53 pathway may play a crucial role in LYG-202-induced cell cycle arrest and apoptosis. Furthermore, siRNA knockdown of p53 attenuated the G1 cell cycle arrest and apoptosis induced by LYG-202, as the effects of LYG-202 on up-regulation of p21(WAF1/Cip1) and down-regulation of Bcl-2 and pro-caspase-3 were partly inhibited in p53 siRNA transfected cells compared with control siRNA transfected cells. Collectively, these data indicate that LYG-202 exerts its anti-tumor potency by activating the p53-p21 pathway for G1/S cell cycle arrest and apoptosis in colorectal cancer cells.  相似文献   

11.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

12.
Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces apoptosis of cells lacking functional p53. Cells expressing wild-type p53 or p21(Cip1)arrest in G1 and remain viable. In cells lacking functional p53, rapamycin or amino acid deprivation induces rapid and sustained activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase, and elevation of phosphorylated c-Jun that results in apoptosis. This stress response depends on expression of eukaryotic initiation factor 4E binding protein 1 and is suppressed by p21(Cip1) independent of cell cycle arrest. Rapamycin induces p21(Cip1) binding to ASK1, suppressing kinase activity and attenuating cellular stress. These results suggest that inhibition of mTOR triggers a potentially lethal response that is prevented only in cells expressing p21(Cip1).  相似文献   

13.
视黄酸对胃癌细胞周期的调控   总被引:3,自引:0,他引:3  
Retinoic acid can induce growth inhibition and apoptosis, and regulate cell cycle in many types of cancer cell lines. In this study, we investigated the role of all-trans retinoic acid (ATRA) and its mechanism of action in human gastric cancer cell lines. Our results demonstrated that ATRA effectively inhibited growth in three of four gastric cancer cell lines by induction of G0/G1 arrest, and did not induce apoptosis in four gastric cancer cell lines. In RA-sensitive cell lines, ATRA-induced G0/G1 arrest is associated with down regulaton of c-myc and hyperphosphorylated Rb expression, and up regulation of p21WAF1/CIP1 and p53 expression. There were no significant changes in cyclin D1 or CDK4 expression induced by ATRA. Futhermore, expression of these genes were not regulated by ATRA in ATRA-resistant gastric cancer cell line. These results indicate that growth inhibition, rather than apoptosis, is correlated with G0/G1 arrest of these cell lines, more important molecules related cell cycle, including c-myc, p21WAF1/CIP1, p53 and Rb, are involveed in regulation of cell cycle in gastric cancer cells.  相似文献   

14.
15.
The introduction of the adenovirus early region 1A (E1A) gene products into normal cells sensitizes these cells to the cytotoxic effects of tumor necrosis factor (TNF). Previous studies have shown that the region of E1A responsible for susceptibility is CR1, a conserved region within E1A which binds the cellular proteins p300 and p105-Rb at nonoverlapping sites. Binding of these and other cellular proteins by E1A results in the induction of E1A-associated activities such as transformation, immortalization, DNA synthesis, and apoptosis. To investigate the mechanism by which E1A induces susceptibility to TNF, the NIH 3T3 mouse fibroblast cell line was infected with viruses containing mutations within E1A which abrogate binding of some or all of the cellular proteins to E1A. The results show that TNF susceptibility is induced by E1A binding to either p300 or p105-Rb. E1A mutants that bind neither p300 nor p105-Rb do not induce susceptibility to TNF. Experiments with stable cell lines created by transfection with either wild-type or mutant E1A lead to these same conclusions. In addition, a correlation between induction of DNA synthesis and induction of TNF sensitivity is seen. Only viruses which induce DNA synthesis can induce TNF sensitivity. Those viruses which do not induce DNA synthesis also do not induce TNF sensitivity. These data suggest that the mechanisms underlying induction of susceptibility to TNF by E1A are intimately connected to E1A's capacity to override cell cycle controls.  相似文献   

16.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21wtHA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase d (pol d). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol d to PCNA at the G1/S phase transition.  相似文献   

17.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21(wt)HA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase delta (pol delta). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol delta to PCNA at the G1/S phase transition.  相似文献   

18.
视黄酸对胃癌细胞周期的调控   总被引:1,自引:0,他引:1  
视黄酸(RA)能够抑制许多类型癌细胞生长、诱导细胞凋亡和调节细胞周期。本文研究了全反式视黄酸(ATRA)对人胃癌细胞的作用机理。结果表明,ATRA通过诱导细胞滞留在G_0/G_1期而显著抑制胃癌细胞生长,但ATRA不能诱导胃癌细胞凋亡;ATRA调控细胞周期与c-myc、磷酸化Rb水平的下调和p21~(WAF1/CIP1)、p53水平的上调有关,而cyclinD_1和CDK_4水平没有明显变化。在RA抗性细胞中,ATRA不能调节这些基因表达。结果证实,ATRA对胃癌细胞生长抑制与其诱导细胞滞留在G_0/G_1期有关,而与细胞凋亡的诱导无关,许多重要的、与周期相关的分子,包括cmyc、p21~(WAF1/CIP1、p53和Rb等参与细胞周期的调控。  相似文献   

19.
Wild-type p53 triggers two distinct biological responses, cell cycle arrest and apoptosis. Several small DNA tumor viruses encode proteins that bind p53 and thus block the function of p53. This probably reflects the need of these viruses to prevent p53-induced cell cycle arrest and apoptosis to allow viral DNA replication. Unlike SV40 large T, polyoma virus large T does not bind p53, and it is still unclear how polyoma virus blocks p53 function. To address this question, we transfected polyoma virus middle T or small t alone or middle T and small t together into J3D mouse T-lymphoma cells carrying temperature-sensitive p53 (ts p53). Induction of wild-type p53 by temperature shift to 32 degrees C triggered both G1 cell cycle arrest and apoptosis in parental J3D-ts p53 cells. In contrast, J3D-ts p53 cells coexpressing middle T and small t showed only a weak G1 cell cycle arrest response after induction of wild-type p53 at 32 degrees C. Fluorescence-activated cell sorter analysis revealed that nearly half of the middle T-expressing cells, 30% of the small t-expressing cells, and a majority of the cells coexpressing middle T and small t were resistant to p53-induced apoptosis. The phosphatidylinositol 3-kinase inhibitor wortmannin partially abrogated the protective effect of middle T but not small t on p53-induced apoptosis, indicating that middle T prevents p53-induced apoptosis through the phosphatidylinositol 3-kinase signal transduction pathway. Our results thus establish a mechanism for polyoma virus-mediated inhibition of p53 function.  相似文献   

20.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号