首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ligand-induced activation of G protein-coupled receptors (GPCRs) is predicted to involve pronounced conformational changes on the intracellular surface or the receptor proteins. A reorientation of the cytoplasmic end of transmembrane domain VI (TM VI) is thought to play a key role in GPCR activation and productive receptor/G protein coupling. Disulfide cross-linking studies with solubilized, Cys-substituted mutant versions of bovine rhodopsin and the M3 muscarinic acetylcholine receptor suggested that the cytoplasmic end of TM VI is conformationally highly flexible, even in the absence of activating ligands (Farrens, D. L., et al. (1996) Science 274, 768-770; Zeng, F. Y., et al. (1999) J. Biol. Chem. 274, 16629-16640). To test the hypothesis that the promiscuous disulfide cross-linking pattern observed in these studies was caused by the use of solubilized receptor proteins endowed with increased conformational flexibility, we employed a recently developed in situ disulfide cross-linking strategy that allows the detection of disulfide bonds in Cys-substituted mutant M3 muscarinic receptors present in their native membrane environment. Specifically, we used membranes prepared from transfected COS-7 cells to analyze a series of double Cys mutant M3 receptors containing one Cys residue within the sequence K484(6.29) to S493(6.38) at the cytoplasmic end of TM VI and a second Cys residue at the cytoplasmic end of TM III (I169C(3.54)). This analysis revealed a disulfide cross-linking pattern that was strikingly more restricted than that observed previously with solubilized receptor proteins, both in the absence and in the presence of the muscarinic agonist, carbachol. Carbachol stimulated the formation of disulfide bonds in only two of the 10 analyzed mutant muscarinic receptors, I169C(3.54)/K484C(6.29) and I169C(3.54)/A488C(6.33), consistent with an agonist-induced rotation of the cytoplasmic end of TM VI. These findings underline the usefulness of analyzing the structural and dynamic properties of GPCRs in their native lipid environment.  相似文献   

2.
The structural changes involved in ligand-dependent activation of G protein-coupled receptors are not well understood at present. To address this issue, we developed an in situ disulfide cross-linking strategy using the rat M(3) muscarinic receptor, a prototypical G(q)-coupled receptor, as a model system. It is known that a tyrosine residue (Tyr(254)) located at the C terminus of transmembrane domain (TM) V and several primarily hydrophobic amino acids present within the cytoplasmic portion of TM VI play key roles in determining the G protein coupling selectivity of the M(3) receptor subtype. To examine whether M3 receptor activation involves changes in the relative orientations of these functionally critical residues, pairs of cysteine residues were substituted into a modified version of the M(3) receptor that contained a factor Xa cleavage site within the third intracellular loop and lacked most endogenous cysteine residues. All analyzed mutant receptors contained a Y254C point mutation and a second cysteine substitution within the segment Lys(484)-Ser(493) at the intracellular end of TM VI. Following their transient expression in COS-7 cells, mutant receptors present in their native membrane environment (in situ) were subjected to mild oxidizing conditions, either in the absence or in the presence of the muscarinic agonist, carbachol. The successful formation of disulfide cross-links was monitored by studying changes in the electrophoretic mobility of oxidized, factor Xa-treated receptors on SDS gels. The observed cross-linking patterns indicated that M(3) receptor activation leads to structural changes that allow the cytoplasmic ends of TM V and TM VI to move closer to each other and that also appear to involve a major change in secondary structure at the cytoplasmic end of TM VI. This is the first study employing an in situ disulfide cross-linking strategy to examine agonist-dependent dynamic structural changes in a G protein-coupled receptor.  相似文献   

3.
Li JH  Hamdan FF  Kim SK  Jacobson KA  Zhang X  Han SJ  Wess J 《Biochemistry》2008,47(9):2776-2788
G protein-coupled receptor (GPCR) function can be modulated by different classes of ligands including full and inverse agonists. At present, little is known about the conformational changes that agonist ligands induce in their target GPCRs. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced structural changes in a series of cysteine (Cys)-substituted mutant M 3 muscarinic acetylcholine receptors. One of our goals was to study whether the cytoplasmic end of transmembrane domain V (TM V), a region known to be critically involved in receptor/G protein coupling, undergoes a major conformational change, similar to the adjacent region of TM VI. Another goal was to determine and compare the disulfide cross-linking patterns observed after treatment of the different mutant receptors with full versus inverse muscarinic agonists. Specifically, we generated 20 double Cys mutant M 3 receptors harboring one Cys substitution within the cytoplasmic end of TM V (L249-I253) and a second one within the cytoplasmic end of TM VI (A489-L492). These receptors were transiently expressed in COS-7 cells and subsequently characterized in pharmacological and disulfide cross-linking studies. Our cross-linking data, in conjunction with a three-dimensional model of the M 3 muscarinic receptor, indicate that M 3 receptor activation does not trigger major structural disturbances within the cytoplasmic segment of TM V, in contrast to the pronounced structural changes predicted to occur at the cytoplasmic end of TM VI. We also demonstrated that full and inverse muscarinic agonists had distinct effects on the efficiency of disulfide bond formation in specific double Cys mutant M 3 receptors. The present study provides novel information about the dynamic changes that accompany M 3 receptor activation and how the receptor conformations induced (or stabilized) by full versus inverse muscarinic agonists differ from each other at the molecular level. Because all class I GPCRs are predicted to share a similar transmembrane topology, the conclusions drawn from the present study should be of broad general relevance.  相似文献   

4.
To gain insight into the molecular architecture of the cytoplasmic surface of G protein-coupled receptors, we have developed a disulfide cross-linking strategy using the m3 muscarinic receptor as a model system. To facilitate the interpretation of disulfide cross-linking data, we initially generated a mutant m3 muscarinic receptor (referred to as m3'(3C)-Xa) in which most native Cys residues had been deleted or substituted with Ala or Ser (remaining Cys residues Cys-140, Cys-220, and Cys-532) and in which the central portion of the third intracellular loop had been replaced with a factor Xa cleavage site. Radioligand binding and second messenger assays showed that the m3'(3C)-Xa mutant receptor was fully functional. In the next step, pairs of Cys residues were reintroduced into the m3'(3C)-Xa construct, thus generating 10 double Cys mutant receptors. All 10 mutant receptors contained a Cys residue at position 169 at the beginning of the second intracellular loop and a second Cys within the C-terminal portion of the third intracellular loop, at positions 484-493. Radioligand binding studies and phosphatidylinositol assays indicated that all double Cys mutant receptors were properly folded. Membrane lysates prepared from COS-7 cells transfected with the different mutant receptor constructs were incubated with factor Xa protease and the oxidizing agent Cu(II)-(1,10-phenanthroline)3, and the formation of intramolecular disulfide bonds between juxtaposed Cys residues was monitored by using a combined immunoprecipitation/immunoblotting strategy. To our surprise, efficient disulfide cross-linking was observed with 8 of the 10 double Cys mutant receptors studied (Cys-169/Cys-484 to Cys-491), suggesting that the intracellular m3 receptor surface is characterized by pronounced backbone fluctuations. Moreover, [35S]guanosine 5'-3-O-(thio)triphosphate binding assays indicated that the formation of intramolecular disulfide cross-links prevented or strongly inhibited receptor-mediated G protein activation, suggesting that the highly dynamic character of the cytoplasmic receptor surface is a prerequisite for efficient receptor-G protein interactions. This is the first study using a disulfide mapping strategy to examine the three-dimensional structure of a hormone-activated G protein-coupled receptor.  相似文献   

5.
Ala substitution scanning mutagenesis has been used to probe the functional role of amino acids in transmembrane (TM) domain 2 of the M1 muscarinic acetylcholine receptor, and of the highly conserved Asn43 in TM1. The mutation of Asn43, Asn61, and Leu64 caused an enhanced ACh affinity phenotype. Interpreted using a rhodopsin-based homology model, these results suggest the presence of a network of specific contacts between this group of residues and Pro415 and Tyr418 in the highly conserved NPXXY motif in TM7 that exhibit a similar mutagenic phenotype. These contacts may be rearranged or broken when ACh binds. D71A, like N414A, was devoid of signaling activity. We suggest that formation of a direct hydrogen bond between the highly conserved side chains of Asp71 and Asn414 may be a critical feature stabilizing the activated state of the M1 receptor. Mutation of Leu67, Ala70, and Ile74 also reduced the signaling efficacy of the ACh-receptor complex. The side chains of these residues are modeled as an extended surface that may help to orient and insulate the proposed hydrogen bond between Asp71 and Asn414. Mutation of Leu72, Gly75, and Met79 in the outer half of TM2 primarily reduced the expression of functional receptor binding sites. These residues may mediate contacts with TM1 and TM7 that are preserved throughout the receptor activation cycle. Thermal inactivation measurements confirmed that a reduction in structural stability followed the mutation of Met79 as well as Asp71.  相似文献   

6.
Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys(220) residue, Gln(207), Gly(211), Arg(213), Gly(218), Ile(222), Phe(224), Leu(225), and Pro(228) were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance.  相似文献   

7.
Endocytosis of agonist-activated G protein-coupled receptors (GPCRs) is required for both resensitization and recycling to the cell surface as well as lysosomal degradation. Thus, this process is crucial for regulation of receptor signaling and cellular responsiveness. Although many GPCRs internalize into clathrin-coated vesicles in a dynamin-dependent manner, some receptors, including the M(2) muscarinic acetylcholine receptor (mAChR), can also exhibit dynamin-independent internalization. We have identified five amino acids, located in the sixth and seventh transmembrane domains and the third intracellular loop, that are essential for agonist-induced M(2) mAChR internalization via a dynamin-independent mechanism in JEG-3 choriocarcinoma cells. Substitution of these residues into the M(1) mAChR, which does not internalize in these cells, is sufficient for conversion to the internalization-competent M(2) mAChR phenotype, whereas removal of these residues from the M(2) mAChR blocks internalization. Cotransfection of a dominant-negative isoform of dynamin has no effect on M(2) mAChR internalization. An internalization-incompetent M(2) mutant that lacks a subset of the necessary residues can still internalize via a G protein-coupled receptor kinase-2 and beta-arrestin-dependent pathway. Furthermore, internalization is independent of the signal transduction pathway that is activated. These results identify a novel motif that specifies structural requirements for subtype-specific dynamin-independent internalization of a GPCR.  相似文献   

8.
《Journal of Physiology》1998,92(3-4):269-274
Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor has revealed a highly-differentiated α-helical structure. Lipid-facing residues are distinguished from a patch of residues which selectively stabilise the ground state of the receptor, and from a band of amino acids extending the full length of the helix, which contribute to the active agonist-receptor-G protein complex. The most important residues are strongly conserved in the GPCR superfamily.  相似文献   

9.
Alanine-scanning mutagenesis has been applied to residues 100-121 in transmembrane domain 3 of the M1 muscarinic acetylcholine receptor. This study complements a previous investigation of the triad Asp122-Arg123-Tyr124 (Lu, Z-L., Curtis, C. A., Jones, P. G., Pavia, J., and Hulme, E. C. (1997) Mol. Pharmacol. 51, 234-241). The results demonstrate the alpha-helical secondary structure of the domain and suggest its orientation with respect to the other transmembrane domains. The C-terminal part of the helix appears to be largely buried within the receptor structure. On its surface, there is a patch of three residues, Val113, Leu116, and Ser120, which may form intramolecular contacts that help to stabilize the inactive ground state of the receptor. Mutagenic disruption of these increased agonist affinity and signaling efficacy. In two cases (L116A and S120A), this led to constitutive activation of the receptor. Parallel to the helix axis and spanning the whole transmembrane region, a distinct strip of residues on one face of transmembrane domain 3 forms intermolecular (acetylcholine-receptor, receptor-G protein) or intrareceptor bonds that contribute to the activated state. The binding of acetylcholine may destabilize the first set of contacts while favoring the formation of the second.  相似文献   

10.
11.
The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.  相似文献   

12.
GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M(3)Rs {M(3) mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3-10 microM), an inverse agonist on wild-type M(3)R. Many of the mutations sensitizing M(3)R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M(3)R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M(3)R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M(3)R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki approximately 10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.  相似文献   

13.
To study the conformational changes that convert G protein-coupled receptors (GPCRs) from their resting to their active state, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system. Specifically, we employed a recently developed in situ disulfide cross-linking strategy that allows the formation of disulfide bonds in Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. At present, little is known about the conformational changes that GPCR ligands induce in the immediate vicinity of the ligand-binding pocket. To address this issue, we generated 11 Cys-substituted mutant M(3) muscarinic receptors and characterized these receptors in transfected COS-7 cells. All analyzed mutant receptors contained an endogenous Cys residue (Cys-532(7.42)) located within the exofacial segment of transmembrane domain (TM) VII, close to the agonist-binding site. In addition, all mutant receptors harbored a second Cys residue that was introduced into the exofacial segment of TM III, within the sequence Leu-142(3.27)-Asn-152(3.37). Disulfide cross-linking studies showed that muscarinic agonists, but not antagonists, promoted the formation of a disulfide bond between S151(3.36)C and Cys-532. A three-dimensional model of the inactive state of the M(3) muscarinic receptor indicated that Cys-532 and Ser-151 face each other in the center of the TM receptor core. Our cross-linking data therefore support the concept that agonist activation pulls the exofacial segments of TMs VII and III closer to each other. This structural change may represent one of the early conformational events triggering the more pronounced structural reorganization of the intracellular receptor surface. To the best of our knowledge, this is the first direct demonstration of a conformational change occurring in the immediate vicinity of the binding site of a GPCR activated by a diffusible ligand.  相似文献   

14.
We used Western blot analysis to examine the expression of connexin 43 and M2/M3 acetylcholine muscarinic receptors (mAChR) and their interaction in ventricular myocytes from control and the ischemic heart. We confirmed that the connexin 43 and M2/ M3-mAChR were expressed in ventricular myocytes. Moreover, we showed that M3-mAChR was expressed in non-glycosylated (72 kDa) and glycosylated forms (115 kDa). Immunostaining showed that connexin 43 is closely associated with M3-mAChR in parts of cell membranes of myocytes. Immunoprecipitation of lysate of cardiac myocytes with M2/M3-mAChR antibody pulled down a 44 kDa protein recognized by connexin 43 antibody. Ischemia increased the expression of M3-mAChR in myocytes. The ischemiainduced increase in the M3-mAChR expression was specific because ischemia did not affect the expression of M1, M2, M4 and M5- mAChR in the heart. On the other hand, ischemia decreased the expression of connexin 43 in myocardium. We also examined the effect of ischemia on the interaction between M2/M3-mAChR and connexin 43. Ischemia suppressed the association of M3-mAChR with connexin 43 but did not affect the association of connexin 43 with M2-mAChR. Administration of choline before ischemia not only partially restored the expression of connexin 43 but also attenuated the ischemia-induced suppression of the association between connexin 43 and M3-mAChR. We conclude that connexin 43 interacts with M2/M3-mAChR and that ischemia specifically impairs the association between M3-mAChR and connexin 43.  相似文献   

15.
The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of α and non-α subunits, or homo-pentameric, composed of α7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between α1 and ? or α7 subunits. The replacement of M3 in α1 by ?M3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse ? chimeric subunit. The duration of the open state decreases with the increase in the number of α1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each α1M3 segment decreases the energy barrier of the closing process by ∼ 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of α1 sequence by α7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.  相似文献   

16.
The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.  相似文献   

17.
Muscarinic acetylcholine receptors were purified from rat forebrain and labeled with [3H]N-(2-chloroethyl)N-(2',3'-[3H2]propyl)-2-aminoethylbenzilate. Cleavage of the labeled muscarinic acetylcholine receptors with a lysine-specific protease yielded labeled, glycosylated peptides about 130 and 200 residues in length, which came from different receptor sequences. The probable cleavage sites are in the second intracellular loop and in the second extracellular or third intracellular loop. The N-terminal 130 residues are disulfide-bonded to another part of the receptor structure, supporting the presence of a link between the second and third extracellular loops. The [3H]propylbenzilylcholine mustard-receptor link is cleaved by nucleophiles, acids, and bases under denaturing conditions, suggesting modification of an acidic residue. Cyanogen bromide cleavage points to transmembrane helix 3 as the site of label attachment.  相似文献   

18.
Shelden MC  Loughlin P  Tierney ML  Howitt SM 《Biochemistry》2003,42(44):12941-12949
The aim of this study was to identify charged amino acid residues important for activity of the sulfate transporter SHST1. We mutated 10 charged amino acids in or near proposed transmembrane helices and expressed the resulting mutants in a sulfate transport-deficient yeast strain. Mutations affecting four residues resulted in a complete loss of sulfate transport; these residues were D107 and D122 in helix 1 and R354 and E366 in helix 8. All other mutants showed some reduction in transport activity. The E366Q mutant was unusual in that expression of the mutant protein was toxic to yeast cells. The R354Q mutant showed reduced trafficking to the plasma membrane, indicating that the protein was misfolded. However, transporter function (to a low level) and wild-type trafficking could be recovered by combining the R354Q mutation with either the E175Q or E270Q mutations. This suggested that R354 interacts with both E175 and E270. The triple mutant E175Q/E270Q/R354Q retained only marginal sulfate transport activity but was trafficked at wild-type levels, suggesting that a charge network between these three residues may be involved in the transport pathway, rather than in folding. D107 was also found to be essential for the ion transport pathway and may form a charge pair with R154, both of which are highly conserved. The information obtained on interactions between charged residues provides the first evidence for the possible spatial arrangement of transmembrane helices within any member of this transporter family. This information is used to develop a model for SHST1 tertiary structure.  相似文献   

19.
Several molecular models of glycoprotein hormone receptor activation have been proposed. It has been suggested that ligand binding to the ectodomain (ECD) leads to major changes in intramolecular interactions between the ECD and the transmembrane domain. We studied these intramolecular modifications by generating a recombinant LH/CG receptor (LHR) bearing an intramolecular cleavage site. We did this by inserting a furin site at position 316 in the hinge region of the ECD (LHR_Fur316). Affinity for human chorionic gonadotropin (hCG) and cAMP production upon hCG stimulation was identical to those of wild-type LHR. Western blot analysis showed that the LHR_Fur316 receptor was cleaved into two subunits linked by disulfide bridges. Chemical shedding of the ECD from the transmembrane domain did not increase basal adenylate cyclase activity, indicating that the first 294 residues did not act as an inverse agonist. The truncated LHR_316 was still activated by hCG but with an EC50 higher than that for the wild-type receptor. Zero length cross-linking was used to study intramolecular interactions between the two domains of LHR_Fur316. Cross-linking efficiency was similar for the basal and activated states, which indicated that the two domains interacted closely in the basal state, and this tight interaction persisted during activation. Our data suggest that activation of the LHR results from subtle modifications of intramolecular interactions between the two domains and low-affinity binding of hCG to the extracellular loops or residues preceding the first transmembrane segment.  相似文献   

20.
The conformational changes that convert G protein-coupled receptors (GPCRs) activated by diffusible ligands from their resting into their active states are not well understood at present. To address this issue, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system, employing a recently developed disulfide cross-linking strategy that allows the formation of disulfide bonds using Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. In the present study, we generated and analyzed 30 double Cys mutant M(3) receptors, all of which contained one Cys substitution within the C-terminal portion of transmembrane domain (TM) VII (Val-541 to Ser-546) and another one within the C-terminal segment of TM I (Val-88 to Phe-92). Following their transient expression in COS-7 cells, all mutant receptors were initially characterized in radioligand binding and second messenger assays (carbachol-induced stimulation of phosphatidylinositol hydrolysis). This analysis showed that all 30 double Cys mutant M(3) receptors were able to bind muscarinic ligands with high affinity and retained the ability to stimulate G proteins with high efficacy. In situ disulfide cross-linking experiments revealed that the muscarinic agonist, carbachol, promoted the formation of cross-links between specific Cys pairs. The observed pattern of disulfide cross-links, together with receptor modeling studies, strongly suggested that M(3) receptor activation induces a major rotational movement of the C-terminal portion of TM VII and increases the proximity of the cytoplasmic ends of TM I and VII. These findings should be of relevance for other family A GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号