首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
p53 suppresses tumor development by responding to unauthorized cell proliferation, growth factor or nutrient deprivation, and DNA damage. Distinct pathways have been identified that cause p53 activation, including ARF-dependent response to oncogene activation, ribosomal protein-mediated response to abnormal rRNA synthesis, and ATM-dependent response to DNA damage. Elucidating the mechanisms of these signaling events are critical for understanding tumor suppression by p53 and development of novel cancer therapeutics. More than a decade of research has established the ATM kinase as a key molecule that activates p53 after DNA damage. Our recent study revealed that ATM phosphorylation of MDM2 is likely to be the key step in causing p53 stabilization. Upon activation by ionizing irradiation, ATM phosphorylates MDM2 on multiple sites near its RING domain. These modifications inhibit the ability of MDM2 to poly-ubiquitinate p53, thus leading to its stabilization. MDM2 phosphorylation does not inactivate its E3 ligase activity per se, since MDM2 self-ubiquitination and MDMX ubiquitination functions are retained. The selective inhibition of p53 poly-ubiquitination is accomplished through disrupting MDM2 oligomerization that may provide a scaffold for processive elongation of poly ubiquitin chains. These findings suggest a novel model of p53 activation and a general mechanism of E3 ligase regulation by phosphorylation.  相似文献   

3.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.  相似文献   

4.
DNA损伤生物学反应中ATM对p21~(WAF1/CIP1)蛋白的直接磷酸化   总被引:3,自引:0,他引:3  
毛细血管扩张性共济失调症突变蛋白 (mutatedinataxiatelangiectasia ,ATM)是直接感受DNA双链断裂损伤并起始诸多DNA损伤信号反应通路的主开关分子 .已有研究发现 ,DNA损伤生物学反应中 ,ATM可通过磷酸化活化p5 3,继而转录活化细胞周期检查点蛋白p2 1WAF1 CIP1的表达 ,而对于ATM是否直接参与p2 1WAF1 CIP1的早期活化迄今尚无实验证明 .通过免疫共沉淀反应 ,检测到细胞电离辐射 (ionizingradiation ,IR)反应早期ATM与p2 1WAF1 CIP1蛋白存在相互作用 .将p2 1WAF1 CIP1蛋白编码基因全长克隆入原核表达载体pGEX4T 2 ,经诱导表达及亲和层析纯化获取GST p2 1融合蛋白作为磷酸化底物 .体外磷酸化实验检测证明 ,IR活化的ATM具磷酸化p2 1WAF1 CIP1蛋白的功能 ,并且此磷酸化功能可被PI3K家族特异性抑制剂Wortmannin所抑制 .结果揭示了IR后ATM可通过直接磷酸化p2 1WAF1 CIP1蛋白 ,在IR致DNA损伤生物学反应早期调控p2 1WAF1 CIP1蛋白的快速活化过程  相似文献   

5.
6.
The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4 - 6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by TPT or MXT, Chk2 rather than ATM mediates p53 phosphorylation.  相似文献   

7.
8.
53BP1 is a p53 binding protein of unknown function that binds to the central DNA-binding domain of p53. It relocates to the sites of DNA strand breaks in response to DNA damage and is a putative substrate of the ataxia telangiectasia-mutated (ATM) kinase. To study the biological role of 53BP1, we disrupted the 53BP1 gene in the mouse. We show that, similar to ATM(-/-) mice, 53BP1-deficient mice were growth retarded, immune deficient, radiation sensitive, and cancer prone. 53BP1(-/-) cells show a slight S-phase checkpoint defect and prolonged G(2)/M arrest after treatment with ionizing radiation. Moreover, 53BP1(-/-) cells feature a defective DNA damage response with impaired Chk2 activation. These data indicate that 53BP1 acts downstream of ATM and upstream of Chk2 in the DNA damage response pathway and is involved in tumor suppression.  相似文献   

9.
Rapid activation of p53 by ionizing irradiation is a classic DNA damage response mediated by the ATM kinase. However, the major signalling target and mechanism that lead to p53 stabilization are unknown. We show in this report that ATM induces p53 accumulation by phosphorylating the ubiquitin E3 ligase MDM2. Multiple ATM target sites near the MDM2 RING domain function in a redundant manner to provide robust DNA damage signalling. In the absence of DNA damage, the MDM2 RING domain forms oligomers that mediate p53 poly ubiquitination and proteasomal degradation. Phosphorylation by ATM inhibits RING domain oligomerization, specifically suppressing p53 poly ubiquitination. Blocking MDM2 phosphorylation by alanine substitution of all six phosphorylation sites results in constitutive degradation of p53 after DNA damage. These observations show that ATM controls p53 stability by regulating MDM2 RING domain oligomerization and E3 ligase processivity. Promoting or disrupting E3 oligomerization may be a general mechanism by which signalling kinases regulate ubiquitination reactions, and a potential target for therapeutic intervention.  相似文献   

10.
11.
We have identified a novel pathway of ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) signaling that results in nuclear factor kappaB (NF-kappaB) activation and chemoresistance in response to DNA damage. We show that the anthracycline doxorubicin (DOX) and its congener N-benzyladriamycin (AD 288) selectively activate ATM and DNA-PK, respectively. Both ATM and DNA-PK promote sequential activation of the mitogen-activated protein kinase (MAPK)/p90(rsk) signaling cascade in a p53-independent fashion. In turn, p90(rsk) interacts with the IkappaB kinase 2 (IKK-2) catalytic subunit of IKK, thereby inducing NF-kappaB activity and cell survival. Collectively, our findings suggest that distinct members of the phosphatidylinositol kinase family activate a common prosurvival MAPK/IKK/NF-kappaB pathway that opposes the apoptotic response following DNA damage.  相似文献   

12.
DNA polymerase eta (PolH) is the product of the xeroderma pigmentosum variant (XPV) gene and a well-characterized Y-family DNA polymerase for translesion synthesis. Cells derived from XPV patients are unable to faithfully bypass UV photoproducts and DNA adducts and thus acquire genetic mutations. Here, we found that PolH can be up-regulated by DNA breaks induced by ionizing radiation or chemotherapeutic agents, and knockdown of PolH gives cells resistance to apoptosis induced by DNA breaks in multiple cell lines and cell types in a p53-dependent manner. To explore the underlying mechanism, we examined p53 activation upon DNA breaks and found that p53 activation is impaired in PolH knockdown cells and PolH-null primary fibroblasts. Importantly, reconstitution of PolH into PolH knockdown cells restores p53 activation. Moreover, we provide evidence that, upon DNA breaks, PolH is partially colocalized with phosphorylated ATM at gamma-H2AX foci and knockdown of PolH impairs ATM to phosphorylate Chk2 and p53. However, upon DNA damage by UV, PolH knockdown cells exhibit two opposing temporal responses: at the early stage, knockdown of PolH suppresses p53 activation and gives cells resistance to UV-induced apoptosis in a p53-dependent manner; at the late stage, knockdown of PolH suppresses DNA repair, leading to sustained activation of p53 and increased susceptibility to apoptosis in both a p53-dependent and a p53-independent manner. Taken together, we found that PolH has a novel role in the DNA damage checkpoint and that a p53 target can modulate the DNA damage response and subsequently regulate p53 activation.  相似文献   

13.
14.
Effects of hyperthermia on p53 protein expression and activity   总被引:5,自引:0,他引:5  
Although p53 responses after DNA damage have been investigated extensively, p53 responses after heat shock, which exerts cytotoxic action by mechanisms other than direct induction of DNA damage, are less well characterized. We investigated, therefore, the effect of hyperthermic exposures on the levels and DNA-binding activity of p53. Experiments were carried out with U2OS and ML-1 cells, known to express wild-type p53 protein. Although heating at 41 degrees C for up to 6 h had only a small effect on p53 levels or DNA binding activity, exposure to temperatures between 42.5 and 45.5 degrees C caused an immediate decrease in protein levels that was associated with a reduction in DNA binding activity. This observation is compatible with a high lability of p53 to heat shock, or heat sensitivity of the pathway regulating p53 levels in non-stressed cells. When cells were heated to 42.5 degrees C and returned to normal temperatures, a strong p53 response associated with an increase in protein levels and DNA binding activity was observed, suggesting the production of p53-inducing cellular damage. At higher temperatures, however, this response was compromised in an exposure-time-dependent manner. The increase in DNA binding activity was more heat sensitive than the increase in p53 levels and was inhibited at lower temperatures and shorter exposure times. Thus, the pathway of p53 activation is itself heat sensitive and compromised at high levels of exposure. Compared to p53 activation after exposure to ionizing radiation, heat-induced activation is rapid and short lived. When cells were exposed to combined heat and radiation, the response observed approximated that of cells exposed to heat alone. Wortmannin at 10 microM inhibited p53 activation for up to 2 h after heat shock suggesting the involvement of wortmannin-sensitive kinases, such as DNA-PK and ATM. Heat shock causes phosphorylation of p53 at Serine-15, but there is no correlation between phosphorylation at this site and activation of the protein. The results in aggregate indicate p53 activation in the absence of DNA damage by a heat-sensitive mechanism operating with faster kinetics than radiation-induced p53 activation. The former response may induce pathways preventing other stimuli from activating p53, as heat-induced activation of p53 is dominant over activation of p53 by DNA damage in combined-treatment experiments. These observations suggest means for abrogating p53 induction after DNA damage with the purpose of potentiating response and enhancing cell killing.  相似文献   

15.
Chen L  Gilkes DM  Pan Y  Lane WS  Chen J 《The EMBO journal》2005,24(19):3411-3422
The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX level by RNAi enhances p53 response to DNA damage. Loss of ATM prevents MDMX degradation and p53 stabilization after DNA damage. Phosphorylation of MDMX on S342, S367, and S403 were detected by mass spectrometric analysis, with the first two sites confirmed by phosphopeptide-specific antibodies. Mutation of MDMX on S342, S367, and S403 each confers partial resistance to MDM2-mediated ubiquitination and degradation. Phosphorylation of S342 and S367 in vivo require the Chk2 kinase. Chk2 also stimulates MDMX ubiquitination and degradation by MDM2. Therefore, the E3 ligase activity of MDM2 is redirected to MDMX after DNA damage and contributes to p53 activation.  相似文献   

16.
17.
Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression.  相似文献   

18.
DNA damage in eukaryotic cells induces signaling pathways mediated by the ATM, p53 and ERK proteins, but the interactions between these pathways are not completely known. To address this issue, we performed a time course analysis in human embryonic fibroblast cells treated with DNA-damaging agents. DNA damage induced the phosphorylation of p53 at Ser 15 (p-p53) and the phosphorylation of ERK (p-ERK). Inhibition of p53 by a dominant negative mutant or in p53(-/-) fibroblast cells abolished ERK phosphorylation. ERK inhibitor prevented p53 phosphorylation, indicating that phosphorylations of p53 and p-ERK are interdependent each other. A time course analysis showed that ATM interacted with p-p53 and p-ERK in early time (0.5 h) and interaction between ATM-bound p-p53 and p-ERK or ATM-bound p-ERK and p-p53 occurred in late time (3 h) of DNA damage. These results indicate that ATM mediates interdependent activation of p53 and ERK through formation of a ternary complex between p-p53 and p-ERK in response to DNA damage to cause growth arrest.  相似文献   

19.
Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated (ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent manner. On the other hand, Ku70/80 is known to participate at a later time point in the DSB response, recruiting DNA-PKcs to facilitate non-homologous end joining. Because Ku70/80 has a high affinity for broken DNA ends and is abundant in nuclei, we examined their possible involvement in other aspects of the DSB damage response, particularly in modulating the activity of ATM and other phosphatidylinositol (PI) 3-related kinases during DSB recognition. We thus analyzed p53(Ser18) phosphorylation in irradiated Ku-deficient cells and observed persistent phosphorylation in these cells relative to wild type cells. ATM or ATR inhibition revealed that this phosphorylation is mainly mediated by ATM-dependent ATR activity at 2 h post-ionizing radiation in wild type cells, whereas in Ku-deficient cells, this occurs mainly through direct ATM activity, with a secondary contribution from ATR via a novel ATM-independent mechanism. Using ATM/Ku70 double-null cell lines, which we generated, we confirmed that ATM-independent ATR activity contributed to persistent phosphorylation of p53(Ser18) in Ku-deficient cells at 12 h post-ionizing radiation. In summary, we discovered a novel role for Ku70/80 in modulating ATM-dependent ATR activation during DSB damage response and demonstrated that these proteins confer a protective effect against ATM-independent ATR activation at later stages of the DSB damage response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号