首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new way to characterize protein folding transition states by (1) insertion of one or more residues into an unstructured protein loop, (2) measurement of the effect on protein folding kinetics and thermodynamics, and (3) analysis of the results in terms of a rate-equilibrium free energy relationship, alpha(Loop). alpha(Loop) reports on the fraction of molecules that form the perturbed loop in the transition state. Interpretation of the changes in equilibrium free energy using standard polymer theory can help detect residual structure in the unfolded state. We illustrate our approach with data for the model proteins CI2 and the alpha spectrin SH3 domain.  相似文献   

2.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

3.
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.  相似文献   

4.
1. A substantial increase of the initial rate of ATP hydrolysis was observed after preincubation of bovine heart submitochondrial particles with phosphoenolpyruvate and pyruvate kinase. 2. The activation was accompanied by an increase of Vmax, without change of Km for ATP. 3. The activated particles catalysed the biphasic hydrolysis of ATP in the presence of an ATP-regenerating system; the initial rapid phase was followed by a second, slower, phase in a time-dependent fashion. 4. The higher the ATP concentration used as a substrate, the higher is the rate of transition between these two phases. 5. The particles catalysed the hydrolysis of ITP with a lag phase; after preincubation with phosphoenolpyruvate and pyruvate kinase, ITP was hydrolysed at a constant rate. 6. Qualitatively the same phenomena were observed when soluble mitochondrial ATPase (F1-ATPase) prepared by the conventional method in the presence of ATP was used as nucleotide triphosphatase. 7. A kinetic scheme is proposed, in which the intermediate active enzyme-product complex (E.ADP) formed during ATP hydrolysis is in slow equilibrium with the inactive E*.ADP complex forming as a result of dislocation of ADP from the active site of ATPase to the other site, which is not in rapid equilibrium with the surrounding medium.  相似文献   

5.
Plasminogen activator inhibitor‐1 (PAI‐1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue‐type and urokinase‐type plasminogen activator (tPA, uPA), affect the fate of PAI‐1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C‐terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N‐terminal RCL is observed upon binding of S195A‐uPA to PAI‐1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI‐1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI‐1 dynamics. Significance : Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.  相似文献   

6.
Ovalbumin (OVA), a non-inhibitory member of the serpin superfamily, forms fibrillar aggregates upon heat-induced denaturation. Recent studies suggested that OVA fibrils are generated by a mechanism similar to that of amyloid fibril formation, which is distinct from polymerization mechanisms proposed for other serpins. In this study, we provide new insights into the mechanism of OVA fibril formation through identification of amyloidogenic core regions using synthetic peptide fragments, site-directed mutagenesis, and limited proteolysis. OVA possesses a single disulfide bond between Cys(73) and Cys(120) in the N-terminal helical region of the protein. Heat treatment of disulfide-reduced OVA resulted in the formation of long straight fibrils that are distinct from the semiflexible fibrils formed from OVA with an intact disulfide. Computer predictions suggest that helix B (hB) of the N-terminal region, strand 3A, and strands 4-5B are highly β-aggregation-prone regions. These predictions were confirmed by the fact that synthetic peptides corresponding to these regions formed amyloid fibrils. Site-directed mutagenesis of OVA indicated that V41A substitution in hB interfered with the formation of fibrils. Co-incubation of a soluble peptide fragment of hB with the disulfide-intact full-length OVA consistently promoted formation of long straight fibrils. In addition, the N-terminal helical region of the heat-induced fibril of OVA was protected from limited proteolysis. These results indicate that the heat-induced fibril formation of OVA occurs by a mechanism involving transformation of the N-terminal helical region of the protein to β-strands, thereby forming sequential intermolecular linkages.  相似文献   

7.
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.  相似文献   

8.
9.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

10.
A method to determine the steady-state kinetic parameters of single-nucleotide insertion in replication was developed using an automated DNA sequencer. The insertion of nucleoside 5'-triphosphates into a 6-carboxyfluorescein-labeled primer by DNA polymerase was quantified from the band pattern on a gel using GeneScan software. The parameters determined by this method were consistent with those obtained by the conventional radioisotope-labeling method. This non-radioactive, fluorescent-based method is rapid and can handle a large number of samples to assess cognate or non-cognate base pair formation between natural or unnatural bases in replication.  相似文献   

11.
Molecular dynamics (MD) simulations were used to explain structural details of cyclin-dependent kinase-2 (CDK2) inhibition by phosphorylation at T14 and/or Y15 located in the glycine-rich loop (G-loop). Ten-nanosecond-long simulations of fully active CDK2 in a complex with a short peptide (HHASPRK) substrate and of CDK2 inhibited by phosphorylation of T14 and/or Y15 were produced. The inhibitory phosphorylations at T14 and/or Y15 show namely an ATP misalignment and a G-loop shift (~5 A) causing the opening of the substrate binding box. The biological functions of the G-loop and GxGxxG motif evolutionary conservation in protein kinases are discussed. The position of the ATP gamma-phosphate relative to the phosphorylation site (S/T) of the peptide substrate in the active CDK2 is described and compared with inhibited forms of CDK2. The MD results clearly provide an explanation previously not known as to why a basic residue (R/K) is preferred at the P(2) position in phosphorylated S/T peptide substrates.  相似文献   

12.
13.
14.
Two reactions were studied with three varieties of starch granules from maize, wheat, and rice. In Reaction-I, the granules were reacted with 1 mM ADP-[(14)C]Glc and in Reaction-II, a portion of the granules from Reaction-I was reacted with 1 mM ADP-Glc. The starch granules were solubilized and reacted with the exo-acting glucoamylase and beta-amylase to an extent of 50% or less of the (14)C-label. The amounts of (14)C-labeled products from glucoamylase and beta-amylase were nearly equal for Reaction-I and Reaction-II. If the addition had been to the nonreducing ends of primers, Reaction-II would not have given any labeled products from the hydrolysis of glucoamylase and beta-amylase. These results indicate that the elongation of the starch chain is the addition of D-glucose to the reducing end by a de novo two-site insertion mechanism and not by the addition of D-glucose to the nonreducing end of a primer. This is in conformity with previous results in which starch granules were pulsed with ADP-[(14)C]Glc and chased with nonlabeled ADP-Glc, giving (14)C-labeled D-glucitol from the pulsed starch and a significant decrease in (14)C-labeled D-glucitol from the chased starch on reducing with NaBH(4) and hydrolyzing with glucoamylase [Carbohydr. Res.2002, 337, 1015-1022]. It also is in conformity with the inhibition of starch synthesis that occurs when putative primers are added to starch granule-ADP-Glc digests, indicating that the elongation is not by the nonreducing-end primer mechanism [Carbohydr. Res.2005, 340, 245-255].  相似文献   

15.
While antithrombin (AT) has small basal inhibitory activity, it reaches its full inhibitory potential against activated blood coagulation factors, FXa, FIXa, and FIIa (thrombin), via an allosteric and/or template (bridging) mechanism by the action of heparin, heparan sulfate, or heparin-mimetic pentasaccharides (PS). From the numerous X-ray structures available for different conformational states of AT, only indirect and incomplete conclusions can be drawn on the inherently dynamic properties of AT. As a typical example, the basal inhibitory activity of AT cannot be interpreted on the basis of “non-activated” free antithrombin X-ray structures since the Arg393 side chain, playing crucial role in antithrombin-proteinase interaction, is not exposed. In order to reveal the intrinsic dynamic properties and the reason of basal inhibitory activity of antithrombin, 2 μs molecular dynamics simulations were carried out on its native free-forms. It was shown from the simulation trajectories that the reactive center loop which is functioning as “bait” for proteases, even without any biasing potential can populate conformational state in which the Arg393 side chain is solvent exposed. It is revealed from the trajectory analysis that the peptide sequences correspond to the helix D extension, and new helix P formation can be featured with especially large root-mean-square fluctuations. Mutual information analyses of the trajectory showed remarkable (generalized) correlation between those regions of antithrombin which changed their conformations as the consequence of AT–PS complex formation. This suggests that allosteric information propagation pathways are present even in the non-activated native form of AT.  相似文献   

16.
The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.  相似文献   

17.
Substantial evidence exists that allochthonous dissolved organic matter (DOM) can provide an important carbon source for pelagic bacteria. On the other hand, it is implicit in the concept of the ‘microbial loop’ that the degradation of recalcitrant, allochthonous DOM should be retarded in the pelagic environment, as bacteria able to utilize recalcitrant DOM compounds for slow growth would be outcompeted by faster-growing bacteria utilizing more labile DOM compounds. Several possible solutions of this apparent paradox are suggested in this paper, including formation of labile DOM from recalcitrant DOM by e.g. photochemical reactions, and mechanisms enabling the maintenance of a metabolically diverse bacterioplankton. These mechanisms include an explanation analogous to Hutchinson's classical solution to the ‘paradox of plankton’, and differential mortality of different populations within the bacterioplankton enabled by selective grazing, infections by bacteriophages and predatory bacteria, and spatial micropatchiness.  相似文献   

18.
A flourescence spectroscopy global data analysis environment is described. Within this analysis environment multidimensional fluoroscence decay data (time and frequency domains) can be analyzed in terms of a wide variety of photophysical models. A generalized compartmental analysis structure is utilized, where one can specify the functions used to link the various compartments together. All fitting parameters may be characterized by either discrete or distributed values. Applications of these new analysis programs to the examination of phase transitions in lipid/membrane systems are described.  相似文献   

19.
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.  相似文献   

20.
Tetrahymena pyriformis GL cells pretreated (imprinted) and not pretreated with insulin showed dissimilar quantitative relations of FITC-insulin binding. Displacement of FITC-insulin by unlabelled insulin was considerably less in the control than in the imprinted series. The curve for saturation of the binding sites with FITC-insulin resembled a true saturation curve. The imprinted cells bound considerably more hormone in a shorter time than the control cells at identical levels of exposure. The dissociation of bound hormone from the imprinted cells increased over the control at 23 degrees C, and to a still greater degree at 4 degrees C. The effect of the pH of the medium on the dissociation of bound FITC-insulin also differed between the imprinted and not imprinted cells. Thus the proposed cytofluorimetric assay of binding kinetics demonstrated the actual conditions of receptor activity, and indicated that the induced insulin binding sites of Tetrahymena behaved similarly to 'classical' receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号