首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium tuberculosis and Mycobacterium leprae are the ethiological agents of tuberculosis and leprosy, respectively. After performing extensive comparisons between genes from these two GC-rich bacterial species, we were able to construct a set of 275 homologous genes. Since these two bacterial species also have a very low growth rate, translational selection could not be so determinant in their codon preferences as it is in other fast-growing bacteria. Indeed, principal-components analysis of codon usage from this set of homologous genes revealed that the codon choices in M. tuberculosis and M. leprae are correlated not only with compositional constraints and translational selection, but also with the degree of amino acid conservation and the hydrophobicity of the encoded proteins. Finally, significant correlations were found between GC3 and synonymous distances as well as between synonymous and nonsynonymous distances. Received: 30 October 1998 / Accepted: 16 August 1999  相似文献   

2.
3.
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas reinhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cyanophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thunbergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchantia polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed. Received: 6 June 1997 / Accepted: 24 July 1997  相似文献   

4.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

5.
Synonymous and nonsynonymous rate variation in nuclear genes of mammals   总被引:34,自引:6,他引:28  
A maximum likelihood approach was used to estimate the synonymous and nonsynonymous substitution rates in 48 nuclear genes from primates, artiodactyls, and rodents. A codon-substitution model was assumed, which accounts for the genetic code structure, transition/transversion bias, and base frequency biases at codon positions. Likelihood ratio tests were applied to test the constancy of nonsynonymous to synonymous rate ratios among branches (evolutionary lineages). It is found that at 22 of the 48 nuclear loci examined, the nonsynonymous/synonymous rate ratio varies significantly across branches of the tree. The result provides strong evidence against a strictly neutral model of molecular evolution. Our likelihood estimates of synonymous and nonsynonymous rates differ considerably from previous results obtained from approximate pairwise sequence comparisons. The differences between the methods are explored by detailed analyses of data from several genes. Transition/transversion rate bias and codon frequency biases are found to have significant effects on the estimation of synonymous and nonsynonymous rates, and approximate methods do not adequately account for those factors. The likelihood approach is preferable, even for pairwise sequence comparison, because more-realistic models about the mutation and substitution processes can be incorporated in the analysis. Received: 17 May 1997 / Accepted: 28 September 1997  相似文献   

6.
An Evaluation of Measures of Synonymous Codon Usage Bias   总被引:14,自引:0,他引:14  
Synonymous codons are not generally used at equal frequencies, and this trend is observed for most genes and organisms. Several methods have been proposed and used to estimate the degree of the nonrandom use of the different synonymous codons. The estimates obtained by these methods, however, show different levels of both precision and dispersion when coding regions of a finite number of codons are under analysis. Here, we present a study, based on computer simulation, of how the different methods proposed to evaluate the nonrandom use of synonymous codons are affected by the length of the coding region analyzed. The results show that some of these methods are heavily influenced by the number of codons and that the comparison of codon usage bias between coding regions of different lengths shows a methodological bias under different conditions of nonrandom use of synonymous codons. The study of the dispersion of the estimates obtained by the different methods gives, on the other hand, an indication of the methods to be applied to compare values of codon usage bias among coding regions of equivalent length. Received: 10 September 1997 / Accepted: 23 March 1998  相似文献   

7.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

8.
To characterize the coding-sequence divergence of closely related genomes, we compared DNA sequence divergence between sequences from a Brassica rapa ssp. pekinensis EST library isolated from flower buds and genomic sequences from Arabidopsis thaliana. The specific objectives were (i) to determine the distribution of and relationship between K a and K s, (ii) to identify genes with the lowest and highest K a:K s values, and (iii) to evaluate how codon usage has diverged between two closely related species. We found that the distribution of K a:K s was unimodal, and that substitution rates were more variable at nonsynonymous than synonymous sites, and detected no evidence that K a and K s were positively correlated. Several genes had K a:K s values equal to or near zero, as expected for genes that have evolved under strong selective constraint. In contrast, there were no genes with K a:K s >1 and thus we found no strong evidence that any of the 218 sequences we analyzed have evolved in response to positive selection. We detected a stronger codon bias but a lower frequency of GC at synonymous sites in A. thaliana than B. rapa. Moreover, there has been a shift in the profile of most commonly used synonymous codons since these two species diverged from one another. This shift in codon usage may have been caused by stronger selection acting on codon usage or by a shift in the direction of mutational bias in the B. rapa phylogenetic lineage.  相似文献   

9.
We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection. Received: 10 November 1998 / Accepted: 28 January 1999  相似文献   

10.
Biased codon usage is common in eukaryotic and prokaryotic genes. Evidence from Escherichia, Saccharomyces, and Drosophila indicates that it favors translational efficiency and accuracy. However, to date no functional advantages have been identified in the codon–anticodon interactions involving the most frequently used (preferred) codons. Here we present evidence that forces not related to the individual codon–anticodon interaction may be involved in determining which synonymous codons are preferred or avoided. We show that the ``off-frame' trinucleotide motif preferences inferrable from Drosophila coding regions are often in the same direction as Drosophila's ``in-frame' codon preferences, i.e., its codon usage. The off-frame preferences were inferred from the nonrandomness of the location of confamilial synonymous codons along coding regions—a pattern often described as a context dependence of nucleotide choice at synonymous positions or as codon-pair bias. We relied on randomizations of the location of confamilial codons that do not alter, and cannot be influenced by, the encoded amino acid sequences, codon usage, or base composition of the genes examined. The statistically significant congruency of in-frame and off-frame trinucleotide preferences suggests that the same kind of reading-frame-independent force(s) may also influence synonymous codon choice. These forces may have produced biases in codon usage that then led to the evolution of the translational advantages of these motifs as preferred codons. Under this scenario, tRNA pool size differences between preferred and nonpreferred codons initially were evolved to track the default overrepresentation of codons with preferred motifs. The motif preference hypothesis can explain the structuring of codon preferences and the similarities in the codon usages of distantly related organisms. Received: 10 November 1998 / Accepted: 23 February 1999  相似文献   

11.
A model of nucleotide substitution that allows the transition/transversion rate bias to vary across sites was constructed. We examined the fit of this model using likelihood-ratio tests by analyzing 13 protein coding genes and 1 pseudogene. Likelihood-ratio testing indicated that a model that allows variation in the transition/transversion rate bias across sites provided a significant improvement in fit for most protein coding genes but not for the pseudogene. When the analysis was repeated with parameters estimated separately for first, second, and third codon positions, strong heterogeneity was uncovered for the first and second codon positions; the variation in the transition/transversion rate was generally weaker at the third codon position. The transition rate bias and branch lengths are underestimated when variation in the transition/transversion rate was not accommodated, suggesting that it may be important to accommodate variation in the pattern of nucleotide substitution for accurate estimation of evolutionary parameters. Received: 4 November 1997 / Accepted: 19 May 1998  相似文献   

12.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

13.
A+T content, phylogenetic relationships, codon usage, evolutionary rates, and ratio of synonymous versus non-synonymous substitutions have been studied in partial sequences of the atpD and aroQ/pheA genes of primary (Buchnera) and secondary symbionts of aphids and a set of selected non-symbiotic bacteria, belonging to the five subdivisions of the Proteobacteria. Compared to the homologous genes of the last group, both genes belonging to Buchnera behave in a similar way, showing a higher A+T content, forming a monophyletic group, a loss in codon bias, especially in third base position, an evolutionary acceleration and an increase in the number of non-synonymous substitutions, confirming previous results reported elsewhere for other genes. When available, these properties have been partly observed with the secondary symbionts, but with values that are intermediate between Buchnera and free living Proteobacteria. They show high A+T content, but not as high as Buchnera, a non-solved phylogenetic position between Buchnera, and the other γ-Proteobacteria, a loss in codon bias, again not as high as in Buchnera and a significant evolutionary acceleration in the case of the three atpD genes, but not when considering aroQ/pheA genes. These results give support to the hypothesis that they are symbionts at different stages of the symbiotic accommodation to the host.  相似文献   

14.
We compared the codon usage of sequences of transposable elements (TEs) with that of host genes from the species Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae, and Homo sapiens. Factorial correspondence analysis showed that, regardless of the base composition of the genome, the TEs differed from the genes of their host species by their AT-richness. In all species, the percentage of A + T on the third codon position of the TEs was higher than that on the first codon position and lower than that in the noncoding DNA of the genomes. This indicates that the codon choice is not simply the outcome of mutational bias but is also subject to selection constraints. A tendency toward higher A + T on the third position than on the first position was also found in the host genes of A. thaliana, C. elegans, and S. cerevisiae but not in those of D. melanogaster and H. sapiens. This strongly suggests that the AT choice is a host-independent characteristic common to all TEs. The codon usage of TEs generally appeared to be different from the mean of the host genes. In the AT-rich genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Saccharomyces cerevisiae, the codon usage bias of TEs was similar to that of weakly expressed genes. In the GC-rich genome of D. melanogaster, however, the bias in codon usage of the TEs clearly differed from that of weakly expressed genes. These findings suggest that selection acts on TEs and that TEs may display specific behavior within the host genomes. Received: 2 May 2001 / Accepted: 29 October 2001  相似文献   

15.
Detailed nucleotide diversity studies revealed that the fil1 gene of Antirrhinum, which has been reported to be single copy, is a member of a gene family composed of at least five genes. In four Antirrhinum majus populations with different mating systems and one A. graniticum population, diversity within populations is very low. Divergence among Antirrhinum species and between Antirrhinum and Digitalis is also low. For three of these genes we also obtained sequences from a more divergent member of the Scrophulariaceae, Verbascum nigrum. Compared with Antirrhinum, little divergence is again observed. These results, together with similar data obtained previously for five cycloidea genes, suggest either that these gene families (or the Antirrhinum genome) are unusually constrained or that there is a low rate of substitution in these lineages. Using a sample of 52 genes, based on two measures of codon usage (ENC and GC3 content), we show that cyc and fil1 are among the least biased Antirrhinum genes, so that their low diversity is not due to extreme codon bias. Received: 20 June 2000 / Accepted: 25 October 2000  相似文献   

16.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

17.
The correlation was shown between the length of introns and the codon usage of the coding sequences of the corresponding genes, which in some cases can be related to the level of gene expression. The link is positive in the unicellular organisms, i.e., genes with the longer introns show the higher bias of codon usage. It is most pronounced in baker's yeast, where it is definitely related to the level of gene expression—genes with the higher level of expression have the longer introns. The correlation is inverted in multicellular organisms as compared to unicellular ones. Some organisms, however, do not show the link. The presence or absence of the link does not seem to be related to the GC percent of the coding sequences. Received: 7 December 1999 / Accepted: 10 May 2000  相似文献   

18.
A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.  相似文献   

19.
In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion, chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of mitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level. The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.  相似文献   

20.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号