首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Hu  Lifang  He  Haohua  Zhu  Changlan  Peng  Xiaosong  Fu  Junru  He  Xiaopeng  Chen  Xiaorong  Ouyang  Linjuan  Bian  Jianmin  Liu  Shiqiang 《Journal of plant research》2017,130(1):95-105
Journal of Plant Research - The enzymes of the chalcone synthase family are also known as type III polyketide synthases (PKS), and produce a series of secondary metabolites in bacteria, fungi and...  相似文献   

2.
Yu D  Xu F  Zeng J  Zhan J 《IUBMB life》2012,64(4):285-295
Polyketides represent an important class of biologically active and structurally diverse compounds in nature. They are synthesized from acyl-coenzyme A substrates by polyketide synthases (PKSs). PKSs are classified into three groups: types I, II, and III. This article introduces recent studies on type III PKSs identified from plants, bacteria, and fungi, and describes the catalytic functions of these enzymes in detail. Plant type III PKSs have been widely studied, as exemplified by chalcone synthase, which plays an important role in the synthesis of plant metabolites. Bacterial type III PKSs fall into five groups, many of which were identified from Streptomyces, a genus that has been well known for its production of bioactive molecules and genetic alterability. Although it was believed that type III PKSs exist exclusively in plants and bacteria, recent fungal genome sequencing projects and biochemical studies revealed the presence of type III PKSs in filamentous fungi, which provides a new chance to study fungal secondary metabolism and synthesize "unnatural" natural products. Type III PKSs have been used for the biosynthesis of novel molecules through precursor-directed and structure-based mutagenesis approaches.  相似文献   

3.
Fungal polyketides comprise a diverse group of secondary metabolites that play an important role for drug discovery, as pigments, and as mycotoxins. Their biosynthesis is governed by multidomain enzymes, so-called fungal type I polyketide synthases (PKS). Investigating the molecular basis of polyketide biosynthesis in fungi is of great importance for ecological and pharmacological reasons. In addition, cloning, functional analysis and expression of fungal PKS genes also set the basis for engineering the yet largely untapped biosynthetic potential.  相似文献   

4.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

5.
植物类型Ⅲ聚酮合酶超家族(PKSs),又称查尔酮合酶(Chalcone synthase,CHS)超家族,催化合成多种植物次生代谢产物的分子骨架。苯亚甲基丙酮合酶(Benzalacetone synthase,BAS)催化4-香豆酰辅酶A与丙二酰辅酶A通过一步脱羧缩合反应生成苯亚甲基丙酮,是一系列具有重要生物学活性苯丁烷类化合物及其衍生物的前体化合物。前期工作从虎杖中分离出苯亚甲基丙酮合酶BAS(PcPKS2)和1个具有CHS和BAS活性的双功能酶(PcPKS1)。两者与超家族其他成员序列经比较,在包括门卫氨基酸Phe215和Phe265在内的重要氨基酸序列存在一定差异。已有蛋白晶体学研究结果表明,PKSs家族不同成员的功能多样性来自于酶催化位点的非常微小的构象变化。为了能够从结构上比较PcPKS2和Pc PKS1双功能酶活性差异可能产生的机制,以确定其高效BAS活性的分子机理,研究利用了大肠杆菌原核表达系统过量表达了C-端融合有His6标签的重组蛋白,经纯化得到了高纯度蛋白。经过对其晶体生长条件进行摸索和优化,得到了能用于X-射线衍射的单晶,为其结构解析、催化机理研究、了解虎杖聚酮类化合物生物合成机制和该类酶在基因工程中的应用提供了基础。  相似文献   

6.
Type III polyketide synthases (PKSs) are responsible for aromatic polyketide synthesis in plants and bacteria. Genome analysis of filamentous fungi has predicted the presence of fungal type III PKSs, although none have thus far been functionally characterized. In the genome of Neurospora crassa, a single open reading frame, NCU04801.1, annotated as a type III PKS was found. In this report, we demonstrate that NCU04801.1 is a novel type III PKS catalyzing the synthesis of pentaketide alkylresorcylic acids. NCU04801.1, hence named 2'-oxoalkylresorcylic acid synthase (ORAS), preferred stearoyl-CoA as a starter substrate and condensed four molecules of malonyl-CoA to give a pentaketide intermediate. For ORAS to yield pentaketide alkylresorcylic acids, aldol condensation and aromatization of the intermediate, which is still attached to the enzyme, are presumably followed by hydrolysis for release of the product as a resorcylic acid. ORAS is the first type III PKS that synthesizes pentaketide resorcylic acids.  相似文献   

7.
8.
9.
A novel C17 resorcylic acid was synthesized by a structure‐guided Vitis vinifera stilbene synthase (STS) mutant, in which threonine 197 was replaced with glycine (T197G). Altering the architecture of the coumaroyl binding and cyclization pocket of the enzyme led to the attachment of an extra acetyl unit, derived from malonyl‐CoA, to p‐coumaroyl‐CoA. The resulting novel pentaketide can be produced strictly by STS‐like enzymes and not by Chalcone synthase‐like type III polyketide synthases; due to the unique thioesterase like activity of STS‐like enzymes. We utilized a liquid chromatography mass spectrometry‐based data analysis approach to directly compare the reaction products of the mutant and wild type STS. The findings suggest an easy to employ platform for precursor‐directed biosynthesis and identification of unnatural polyketides by structure‐guided mutation of STS‐like enzymes.  相似文献   

10.
Myxobacteria belonging to the genus Sorangium are known to produce a variety of biologically active secondary metabolites. Chivosazol is a macrocyclic antibiotic active against yeast, filamentous fungi and especially against mammalian cells. The compound specifically destroys the actin skeleton of eucaryotic cells and does not show activity against bacteria. Chivosazol contains an oxazole ring and a glycosidically bound 6-deoxyglucose (except for chivosazol F). In this paper we describe the biosynthetic gene cluster that directs chivosazol biosynthesis in the model strain Sorangium cellulosum So ce56. This biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide synthase genes and one hybrid polyketide synthase/nonribosomal peptide synthetase gene. An additional gene encoding a protein with similarity to different methyltransferases and presumably involved in post-polyketide modification was identified downstream of the core biosynthetic gene cluster. The chivosazol biosynthetic gene locus belongs to the recently identified and rapidly growing class of trans-acyltransferase polyketide synthases, which do not contain acyltransferase domains integrated into the multimodular megasynthetases.  相似文献   

11.
Abstract Type I polyketide synthases are known to produce a wide range of medically and industrially important polyketides. The ketosynthase (KS) domain is required for the condensation of an extender unit onto the growing polyketide chain during polyketide biosynthesis. KSs represent a superfamily of complex biosynthetic pathway-associated enzymes found in prokaryotes, fungi, and plants. Although themselves functionally conserved, KSs are involved in the production of a structurally diverse range of metabolites. Degenerate oligonucleotide primers, designed for the amplification of KS domains, amplified KS domains from a range of organisms including cyanobacterial and dinoflagellates. KS domains detected in dinoflagellate cultures appear to have been amplified from the less than 3-μm filtrate of the nonaxenic culture. Phylogenetic analysis of sequences obtained during this study enabled the specific identification of KS domains of hybrid or mixed polyketide synthase/peptide synthetase complexes, required for the condensation of an extender unit onto an amino acid starter unit. The primer sets described in this study were also used for the detection of novel KS domains directly from environmental samples. The ability to predict function based on primary molecular structure will be critical for future discovery and rational engineering of polyketides.  相似文献   

12.
A cDNA encoding a novel plant type III polyketide synthase was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae). The deduced amino acid sequence of Hu. serrata polyketide synthase 1 showed 44-66% identity to those of other chalcone synthase superfamily enzymes of plant origin. Further, phylogenetic tree analysis revealed that Hu. serrata polyketide synthase 1 groups with other nonchalcone-producing type III polyketide synthases. Indeed, a recombinant enzyme expressed in Escherichia coli showed unusually versatile catalytic potential to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, it is remarkable that the enzyme accepted bulky starter substrates such as 4-methoxycinnamoyl-CoA and N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 4-methoxy-2',4',6'-trihydroxychalcone and 1,3-dihydroxy-N-methylacridone, respectively. In contrast, regular chalcone synthase does not accept these bulky substrates, suggesting that the enzyme has a larger starter substrate-binding pocket at the active site. Although acridone alkaloids have not been isolated from Hu. serrata, this is the first demonstration of the enzymatic production of acridone by a type III polyketide synthase from a non-Rutaceae plant. Interestingly, Hu. serrata polyketide synthase 1 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).  相似文献   

13.
Polyketide synthases (PKS) produce an array of natural products with different biological activities and pharmacological properties by varying the starter and extender molecules that form the final polyketide. Recent studies of the simplest PKS, the chalcone synthase (CHS)-like enzymes involved in the biosynthesis of flavonoids, anthocyanin pigments, and antimicrobial phytoalexins, have yielded insight on the molecular basis of this biosynthetic versatility. Understanding the structure–function relationship in these PKS provides a foundation for manipulating polyketide formation and suggests strategies for further increasing the scope of polyketide biosynthetic diversity. Journal of Industrial Microbiology & Biotechnology (2001) 27, 393–398. Received 14 June 2001/ Accepted in revised form 15 July 2001  相似文献   

14.
The Mycobacterium tuberculosis genome has revealed a remarkable array of polyketide synthases (PKSs); however, no polyketide product has been isolated thus far. Most of the PKS genes have been implicated in the biosynthesis of complex lipids. We report here the characterization of two novel type III PKSs from M. tuberculosis that are involved in the biosynthesis of long-chain alpha-pyrones. Measurement of steady-state kinetic parameters demonstrated that the catalytic efficiency of PKS18 protein was severalfold higher for long-chain acyl-coenzyme A substrates as compared with the small-chain precursors. The specificity of PKS18 and PKS11 proteins toward long-chain aliphatic acyl-coenzyme A (C12 to C20) substrates is unprecedented in the chalcone synthase (CHS) family of condensing enzymes. Based on comparative modeling studies, we propose that these proteins might have evolved by fusing the catalytic machinery of CHS and beta-ketoacyl synthases, the two evolutionarily related members with conserved thiolase fold. The mechanistic and structural importance of several active site residues, as predicted by our structural model, was investigated by performing site-directed mutagenesis. The functional identification of diverse catalytic activity in mycobacterial type III PKSs provide a fascinating example of metabolite divergence in CHS-like proteins.  相似文献   

15.
Many biocontrol fluorescent pseudomonads can protect plants from soilborne fungal pathogens through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol (Phl). One of the phl biosynthetic genes, phlD, encodes a polyketide synthase similar to plant chalcone synthases. Here, restriction analysis of phlD from 39 Phl+ biocontrol fluorescent pseudomonads yielded seven different banding patterns. The gene was sequenced in seven strains, representing the different restriction patterns. Cluster analysis of phlD restriction data or phlD sequences indicated that phlD polymorphism was high, and two main clusters were obtained when predicted PhlD sequences were compared. When the seven PhlD sequences were studied with those of other procaryotic polyketide synthases (gram-positive bacteria) and plant chalcone synthases, however, Phl+ pseudomonads, gram-positive bacteria, and plants clustered separately. Yet, sequence analysis of active site regions for PhlD and plant chalcone synthases revealed that PhlD can be considered a member of the chalcone synthase family, which may be interpreted as convergent evolution of key enzymes involved in secondary metabolism. For the 39 Phl+ pseudomonads, a relationship was found among phlD restriction patterns, phylogenetic groups defined by 16S rDNA restriction analysis (confirmed by 16S rDNA sequencing), and production levels of Phl in vitro.  相似文献   

16.
Resveratrol and chalcone synthases are related plant-specific polyketide synthases that are key enzymes in the biosynthesis of stilbenes and flavonoids, respectively. The stepwise condensing reactions correspond to those in other polyketide and fatty-acid synthases. This predicts that the two proteins also contain cysteines that are essential for enzyme activity because they bind the substrates. We exchanged, in both enzymes, all of the 6 conserved cysteines into alanine by site-directed mutagenesis and tested the mutants after expression of the proteins in the Escherichia coli heterologous system. Only cysteine 169 was essential in both enzymes, and inhibitor studies suggest that it is the main target of cerulenin, an antibiotic reacting with the cysteine in the active center of condensing enzymes. Most of the other exchanges led to reduced activities. In two cases, the enzymes responded differently, suggesting that the cysteines at positions 135 and 195 may be involved in the different product specificity of the two enzymes. The sequences surrounding the essential cysteine 169 revealed no similarity to the active sites of condensing enzymes in other polyketide synthases and in fatty acid biosynthesis. The available data indicate that resveratrol and chalcone synthases represent a group of enzymes that evolved independently of other condensing enzymes.  相似文献   

17.
18.
The structurally and mechanistically simple type III polyketide synthases (PKSs) catalyze iterative condensations of CoA thioesters to produce a variety of polyketide scaffolds with remarkably diverse structures and biological activities. By exploiting the enzymes, we combined precursor-directed biosynthesis with nitrogen-containing substrates and structure-based enzyme engineering and generated unnatural, novel polyketide-alkaloid scaffolds with promising biological activities. The nucleophilic nitrogen atom and the engineered enzymes thus facilitated the formation of additional CC and CN bonds during the enzymatic transformations. The methodology will contribute to the further production of chemically and structurally divergent, unnatural natural products, as well as the rational design of novel biocatalysts with unprecedented catalytic functions.  相似文献   

19.
Members of the Zingiberaceae such as turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) accumulate at high levels in their rhizomes important pharmacologically active metabolites that appear to be derived from the phenylpropanoid pathway. In ginger, these compounds are the gingerols; in turmeric these are the curcuminoids. Despite their importance, little is known about the biosynthesis of these compounds. This investigation describes the identification of enzymes in the biosynthetic pathway leading to the production of these bioactive natural products. Assays for enzymes in the phenylpropanoid pathway identified the corresponding enzyme activities in protein crude extracts from leaf, shoot and rhizome tissues from ginger and turmeric. These enzymes included phenylalanine ammonia lyase, polyketide synthases, p-coumaroyl shikimate transferase, p-coumaroyl quinate transferase, caffeic acid O-methyltransferase, and caffeoyl-CoA O-methyltransferase, which were evaluated because of their potential roles in controlling production of certain classes of gingerols and curcuminoids. All crude extracts possessed activity for all of these enzymes, with the exception of polyketide synthases. The results of polyketide synthase assays showed detectable curcuminoid synthase activity in the extracts from turmeric with the highest activity found in extracts from leaves. However, no gingerol synthase activity could be identified. This result was explained by the identification of thioesterase activities that cleaved phenylpropanoid pathway CoA esters, and which were found to be present at high levels in all tissues, especially in ginger tissues. These activities may shunt phenylpropanoid pathway intermediates away from the production of curcuminoids and gingerols, thereby potentially playing a regulatory role in the biosynthesis of these compounds.  相似文献   

20.
Chain lengths and cyclization patterns of microbial polyketides are generally determined by polyketide synthases alone. Fungal polyketide melanins are often derived from a pentaketide 1,8-dihydroxynaphthalene, and pentaketide synthases are used for synthesis of the upstream pentaketide precursor, 1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN). However, Aspergillus fumigatus, a human fungal pathogen, uses a heptaketide synthase (Alb1p) to synthesize its conidial pigment through a pentaketide pathway similar to that which produces 1,8-dihydroxynaphthalene-melanin. In this study we demonstrate that a novel protein, Ayg1p, is involved in the formation of 1,3,6,8-THN by chain-length shortening of a heptaketide precursor in A. fumigatus. Deletion of the ayg1 gene prevented the accumulation of 1,3,6,8-THN suggesting the involvement of ayg1 in 1,3,6,8-THN production. Genetic analyses of double-gene deletants suggested that Ayg1p catalyzes a novel biosynthetic step downstream of Alb1p and upstream of Arp2p (1,3,6,8-THN reductase). Further genetic and biochemical analyses of the reconstituted strains carrying alb1, ayg1, or alb1 + ayg1 indicated that Ayg1p is essential for synthesis of 1,3,6,8-THN in addition to Alb1p. Cell-free enzyme assays, using the crude Ayg1p protein extract, revealed that Ayg1p enzymatically shortened the heptaketide product of Alb1p to 1,3,6,8-THN. Thus, the protein Ayg1p facilitates the participation of a heptaketide synthase in a pentaketide pathway via a novel polyketide-shortening mechanism in A. fumigatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号