首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Front-rear asymmetry in motile cells is crucial for efficient directional movement. The uropod in migrating lymphocytes is a posterior protrusion in which several proteins, including CD44 and ezrin/radixin/moesin (ERM), are concentrated. In EL4.G8 T-lymphoma cells, Thr567 phosphorylation in the COOH-terminal domain of ezrin regulates the selective localization of ezrin in the uropod. Overexpression of the phosphorylation-mimetic T567D ezrin enhances uropod size and cell migration. T567D ezrin also induces construction of the CD44-associated polar cap, which covers the posterior cytoplasm in staurosporine-treated, uropod-disrupted EL4.G8 cells or in naturally unpolarized X63.653 myeloma cells in an actin cytoskeleton-dependent manner. Rho-associated coiled coil-containing protein kinase (ROCK) inhibitor Y-27632 disrupts the uropod but not the polar cap, indicating that Rho-ROCK signaling is required for posterior protrusion but not for ERM phosphorylation. Phosphorylated ezrin associates with Dbl through its NH2-terminal domain and causes Rho activation. Moreover, constitutively active Q63L RhoA is selectively localized in the rear part of the cells. Thus, phosphorylated ERM has a potential function in establishing plasma membrane "posteriority" in the induction of the uropod in T lymphocytes.  相似文献   

2.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

3.

Background

T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR) triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known.

Methodology/Principal Findings

Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin.

Conclusions/Significance

We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.  相似文献   

4.
Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell.  相似文献   

5.
Shin SW  Park DS  Kim SC  Park HY 《FEBS letters》2000,466(1):70-74
Oxidised low density lipoprotein (LDL) plays an important role in the pathogenesis of atherosclerosis. Here we demonstrate that mildly oxidised (mox) LDL engages the GTPase Rho and its effector molecule p160 Rho-kinase to induce phosphorylation of myosin light chain and of moesin leading to platelet shape change. Pretreatment of platelets with the selective Rho inhibitor C3-transferase from Clostridium botulinum or with the Rho-kinase inhibitor Y-27632 blocked mox-LDL-induced myosin light chain phosphorylation, moesin phosphorylation and shape change. Mox-LDL did not induce an increase in cytosolic Ca(2+) during shape change. We propose that Rho/Rho-kinase inhibition could be a strategy for prevention of the pathologic platelet activation during atherogenesis.  相似文献   

6.
Cell polarization is necessary for directed migration and leukocyte recruitment to inflamed tissues. Recent progress has been made in defining the molecular mechanisms that regulate chemoattractant-induced cell polarity during chemotaxis, including the contribution of phosphoinositide 3-kinase (PI3K)-dependent phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] synthesis at the leading edge. However, less is known about the molecular composition of the cell rear and how the uropod functions during cell motility. Here, we demonstrate that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma661), which generates PtdIns(4,5)P(2), is enriched in the uropod during chemotaxis of primary neutrophils and differentiated HL-60 cells (dHL-60). Using time-lapse microscopy, we show that enrichment of PIPKIgamma661 at the cell rear occurs early upon chemoattractant stimulation and is persistent during chemotaxis. Accordingly, we were able to detect enrichment of PtdIns(4,5)P(2) at the uropod during chemotaxis. Overexpression of kinase-dead PIPKIgamma661 compromised uropod formation and rear retraction similar to inhibition of ROCK signaling, suggesting that PtdIns(4,5)P(2) synthesis is important to elicit the backness response during chemotaxis. Together, our findings identify a previously unknown function for PIPKIgamma661 as a novel component of the backness signal that regulates rear retraction during chemotaxis.  相似文献   

7.
Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.  相似文献   

8.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

9.
The Rho GTPase Rac1 controls cell adhesion and motility. The effector loop of Rac1 mediates interactions with downstream effectors, whereas its C-terminus binds the exchange factor beta-Pix, which mediates Rac1 targeting and activation. Here, we report that Rac1, through its C-terminus, also binds the nuclear oncogene SET/I2PP2A, an inhibitor of the serine/threonine phosphatase PP2A. We found that SET translocates to the plasma membrane in cells that express active Rac1 as well as in migrating cells. Membrane targeting of SET stimulates cell migration in a Rac1-dependent manner. Conversely, reduction of SET expression inhibits Rac1-induced migration, indicating that efficient Rac1 signalling requires membrane recruitment of SET. The recruitment of the SET oncogene to the plasma membrane represents a new feature of Rac1 signalling. Our results suggest a model in which Rac1-stimulated cell motility requires both effector loop-based downstream signalling and recruitment of a signalling amplifier, that is, SET, through the hypervariable C-terminus.  相似文献   

10.
Retzer M  Essler M 《Cellular signalling》2000,12(9-10):645-648
Platelet activation plays an important role in arterial thrombotic disorders. Here we show that the serum-borne phospholipid lysophosphatidic acid (LPA) activates the GTPase Rho and its target Rho-kinase to induce myosin light-chain (MLC) and moesin phosphorylation, leading to platelet shape change. MLC phosphorylation, moesin phosphorylation, and shape change were blocked by preincubating platelets with C3 transferase from Clostridium botulinum and Y-27632-specific inhibitors of Rho and Rho kinase, respectively. LPA did not increase the cytosolic Ca(2+) concentration during shape change. Our results suggest that LPA via Rho-Rho kinase induces MLC and moesin phosphorylation leading to shape change in the absence of an increase in the cytosolic Ca(2+) concentration. Rho/Rho kinase inhibition could be a therapeutic strategy to prevent pathologic platelet activation during arterial thrombotic disorders.  相似文献   

11.
Understanding the physiological migration of hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated the role of the Rho kinase pathway in the morphology and migration of hematopoietic progenitors using an ex vivo co-culture consisting of human primary CD34+ progenitors and mesenchymal stromal cells. The addition of the Rho kinase inhibitor Y-27632 led to the abolishment of the uropod and microvillar-like structures of hematopoietic progenitors, concomitant with a redistribution of proteins found therein (prominin-1 and ezrin). Y-27632-treated cells displayed a deficiency in migration. Time-lapse video microscopy revealed impairment of the rear pole retraction. Interestingly, the knockdown of ROCK I, but not ROCK II, using RNA interference (RNAi) was sufficient to cause the referred morphological and migrational changes. Unexpectedly, the addition of nocodazole to either Y-27632- or ROCK I RNAi-treated cells could restore their polarized morphology and migration suggesting an active role for the microtubule network in tail retraction. Finally, we could demonstrate using RNAi that RhoA, the upstream regulator of ROCK, is involved in these processes. Collectively, our data provide new insights regarding the role of RhoA/ROCK I and the microtubules in the migration of stem cells.  相似文献   

12.
Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho family. We report here that in collecting duct CD8 cells hypotonicity-induced cell swelling resulted in deep actin reorganization, consisting of loss of stress fibers and formation of F-actin patches in membrane protrusions where the ERM protein moesin was recruited. Cell swelling increased the interaction between actin and moesin and induced the transition of moesin from an oligomeric to a monomeric functional conformation, characterized by both the COOH- and NH2-terminal domains being exposed. In this conformation, which is stabilized by phosphorylation of a conserved threonine in the COOH-terminal domain by PKC or Rho kinase, moesin can bind interacting proteins. Interestingly, hypotonic stress increased the amount of threonine-phosphorylated moesin, which was prevented by the PKC- inhibitor Gö-6976 (50 nM). In contrast, the Rho kinase inhibitor Y-27632 (1 µM) did not affect the hypotonicity-induced increase in phosphorylated moesin. The present data represent the first evidence that hypotonicity-induced actin remodeling is associated with phosphorylated moesin recruitment at the cell border and interaction with actin. ezrin/radixin/moesin; protein kinase C; Rho  相似文献   

13.
Melanosomes synthesized within melanocytes are transferred to keratinocytes through dendrites, resulting in a constant supply of melanin to the epidermis, and this process determines skin pigmentation. During screening for inhibitors of melanosome transfer, we found a novel reagent, centaureidin, that induces significant morphological changes in normal human epidermal melanocytes and inhibits melanocyte dendrite elongation, resulting in a reduction of melanosome transfer in an in vitro melanocyte-keratinocyte co-culture system. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation, and activated Rho promotes dendrite retraction, we studied the effects of centaureidin on the small GTPases. In in vitro binding assay, centaureidin activated Rho and furthermore, a Rho inhibitor (C. botulinum C3 exoenzyme), a Rho kinase inhibitor (Y27632) and a small GTPase inhibitor (Toxin B) blocked dendrite retraction induced by centaureidin. These results suggest centaureidin could act via the Rho signaling pathway, and it may directly or indirectly activate Rho. Thus, centaureidin appears to inhibit dendrite outgrowth from melanocytes by activating Rho, resulting in the inhibition of melanosome transfer from melanocytes to keratinocytes.  相似文献   

14.
Tight junctions control paracellular permeability and cellpolarity. Rho GTPase regulates tight junction assembly, and ATP depletion of Madin-Darby canine kidney (MDCK) cells (an in vitro modelof renal ischemia) disrupts tight junctions. The relationship between Rho GTPase signaling and ATP depletion was examined. Rho inhibition resulted in decreased localization of zonula occludens-1 (ZO-1) and occludin at cell junctions; conversely, constitutive Rhosignaling caused an accumulation of ZO-1 and occludin at cell junctions. Inhibiting Rho before ATP depletion resulted in more extensive loss of junctional components between transfected cells thancontrol junctions, whereas cells expressing activated Rho bettermaintained junctions during ATP depletion than control cells. ATPdepletion and Rho signaling altered phosphorylation signalingmechanisms. ZO-1 and occludin exhibited rapid decreases in phosphoaminoacid content following ATP depletion, which was restored on recovery.Expression of Rho mutant proteins in MDCK cells also altered levels ofoccludin serine/threonine phosphorylation, indicating that occludin isa target for Rho signaling. We conclude that Rho GTPase signalinginduces posttranslational effects on tight junction components. Ourdata also demonstrate that activating Rho signaling protects tightjunctions from damage during ATP depletion.

  相似文献   

15.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

16.
Tan I  Lai J  Yong J  Li SF  Leung T 《FEBS letters》2011,585(9):1260-1268
Cell movement requires forces generated by non-muscle myosin II (NM II) for coordinated protrusion and retraction. The Cdc42/Rac effector MRCK regulates a specific actomyosin network in the lamella essential for cell protrusion and migration. Together with the Rho effector ROK required for cell rear retraction, they cooperatively regulate cell motility and tumour cell invasion. Despite the increasing importance of ROK inhibitors for both experimental and clinical purposes, there is a lack of specific inhibitors for other related kinases such as MRCK. Here, we report the identification of chelerythrine chloride as a specific MRCK inhibitor. Its ability to block cellular activity of MRCK resulted in the specific loss of NM II-associated MLC phosphorylation in the lamella, and the consequential suppression of cell migration.  相似文献   

17.
Cell migration and cytokinesis require reorganization of the cytoskeleton, involving phosphorylation and dephosphorylation of proteins such as myosin II and moesin. Myosin and moesin bind directly to a regulatory subunit of myosin/moesin phosphatase (MMP) that contains a protein type-1 phosphatase (PP1) catalytic subunit. Here we examined the role of MMP in cytoskeletal dynamics using a phosphorylation-dependent inhibitor protein specific for MMP, called CPI-17. Fibroblasts do not express CPI-17, making them a null background to study effects of expression. Wild type CPI-17 in rat embryo fibroblasts caused (1) abnormal accumulation of cortical F-actin fibers, distinct from the stress fibers induced by expression of active RhoA; (2) progressive contraction of cell area, leaving behind filamentous extensions that stained for F-actin and moesin, but not myosin; and (3) significantly retarded spreading of fibroblasts on fibronectin with elevated myosin II light chain phosphorylation. A phosphorylation site mutant CPI-17(T38A) and inhibitor-2 (Inh2), another PP1-specific inhibitor protein, served as controls and did not elicit these same responses when expressed at the same level as CPI-17. Inhibition of myosin light chain kinase by ML-9 prevented the abnormal accumulation of cortical microfilaments by CPI-17, but did not reverse shrinkage in area, whereas kinase inhibitors HA1077 and H7 prevented CPI-17-induced changes in microfilament distribution and cell contraction. These results highlight the physiological importance of myosin/moesin phosphatase regulation to dynamic remodeling of the cytoskeleton.  相似文献   

18.
Huang NK  Lin YL  Cheng JJ  Lai WL 《Life sciences》2004,75(13):1649-1657
Gastrodia elata (G. elata) is a traditional Chinese herbal medicine for treating headaches, dizziness, tetanus, and epilepsy. In this study, differential methanol (MeOH) extracts of G. elata were found to prevent serum-deprived rat pheochromocytoma (PC12) cell apoptosis by the MTT assay and Hoechst staining. A serine/threonine kinase inhibitor attenuated this protection. G. elata resulted in phosphorylation and dephosphorylation of ERK1/2 and JNK1/2-p38 MAPKs (members of the serine/threonine kinase family), respectively, as revealed by Western blot analysis. An upstream ERK inhibitor attenuated G. elata-induced ERK phosphorylation but not protective effect. Although JNK and p38 inhibitors attenuated their related enzyme activities during serum deprivation, only JNK inhibitor prevented serum-deprived apoptosis. Thus, G. elata prevents serum-deprived apoptosis through activation of the serine/threonine kinase-dependent pathway and suppression of JNK activity.  相似文献   

19.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

20.
Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号