首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydration force and bilayer deformation: a reevaluation   总被引:20,自引:0,他引:20  
T J McIntosh  S A Simon 《Biochemistry》1986,25(14):4058-4066
The hydration repulsive force between lipid bilayers and the deformability of both gel and liquid-crystalline bilayers have been quantitated by an X-ray diffraction analysis of osmotically stressed liposomes. Both sampling theorem reconstructions and electron density distributions were calculated from diffraction data obtained from multilayers with applied osmotic pressures of 0-50 atm. The bilayer thickness and area per lipid molecule remain nearly constant (to within about 4%) in this pressure range, as adjacent bilayers move from their equilibrium separation in excess water to within 2-4 A of each other. This analysis indicates that the bilayers are relatively incompressible. This results differs from previously published X-ray diffraction studies of bilayer compressibility but agrees with direct mechanical measurements of the bilayer compressibility modulus. It is also found that the hydration repulsive force decays exponentially with separation between bilayers with a decay constant of 1.4 A for gel-state dipalmitoylphosphatidylcholine and 1.7 A for liquid-crystalline egg phosphatidylcholine bilayers. This implies that the exponential decay constant is not necessarily equal to the diameter of a water molecule, as has been previously suggested on experimental and theoretical grounds.  相似文献   

2.
The structures of DMPC and DPPC bilayers in unilamellar liposomes, in the presence of 33.3 mol% cholesterol or the plant sterol β-sitosterol, have been studied by small-angle neutron scattering. The bilayer thickness d L increases in a similar way for both sterols. The repeat distance in multilamellar liposomes, as determined by small-angle X-ray diffraction, is larger in the presence of β-sitosterol than in the presence of cholesterol. We observe that each sterol modifies the interlamellar water layer differently, cholesterol reducing its thickness more efficiently than β-sitosterol, and conclude that cholesterol suppresses bilayer undulations more effectively than β-sitosterol.  相似文献   

3.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05-0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (P beta') phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

4.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05–0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (Pβ′) phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

5.
The effects of the cholesterol analog 5 alpha-cholestan-3 beta-ol-6-one (6-ketocholestanol) on bilayer structure, bilayer cohesive properties, and interbilayer repulsive pressures have been studied by a combination of x-ray diffraction, pipette aspiration, and dipole potential experiments. It is found that 6-ketocholestanol, which has a similar structure to cholesterol except with a keto moiety at the 6 position of the B ring, has quite different effects than cholesterol on bilayer organization and cohesive properties. Unlike cholesterol, 6-ketocholestanol does not appreciably modify the thickness of liquid-crystalline egg phosphatidylcholine (EPC) bilayers, and causes a much smaller increase in bilayer compressibility modulus than does cholesterol. These data imply that 6-ketocholestanol has both its hydroxyl and keto moieties situated near the water-hydrocarbon interface, thus making its orientation in the bilayer different from cholesterol's. The addition of equimolar 6-ketocholestanol into EPC bilayers increases the magnitude, but not the decay length, of the exponentially decaying repulsive hydration pressure between adjacent bilayers. Incorporation of equimolar 6-ketocholestanol into EPC monolayers increases the dipole potential by approximately 300 mV. These data are consistent with our previous observation that the magnitude of the hydration pressure is proportional to the square of the dipole potential. These results mean that 6-ketocholestanol, despite its location in the bilayer hydrocarbon region, approximately 10 A from the physical edge of the bilayer, modifies the organization of interlamellar water. We argue that the incorporation of 6-ketocholestanol into EPC bilayers increases the hydration pressure, at least in part, by increasing the electric field strength in the polar head group region.  相似文献   

6.
We have looked for the effects of three clinically used inhalational anaesthetics (nitrous oxide, halothane and cyclopropane) on the structure of lecithin/ cholesterol bilayers. The anaesthetics were delivered to the membranes in the gaseous phase, so that effects at clinical concentrations could be determined.High-resolution X-ray diffraction patterns were recorded out to 4 Å and analyzed using swelling experiments. Parallel neutron diffraction experiments were performed and analyzed using H2O-2H2O exchange. Methods were developed which enabled us to obtain confidence limits for the X-ray and neutron structure factors.The resultant X-ray and neutron scattering density profiles clearly define the positions of the principal molecular groups in the unperturbed bilayer. In particular, the high-resolution electron density profiles reveal features directly attributable to the cholesterol molecule. A comparison with the neutron scattering density profiles shows that cholesterol is anchored with its hydroxyl group at the water/hydrocarbon interface, aligned with the fatty acid ester groups of the lecithin molecule. We suggest that this positioning of the cholesterol molecule allows it to act as a thickness buffer for plasma membranes.In the presence of very high concentrations of general anaesthetics, the bilayers show increased disorder while maintaining constant membrane thickness. At surgical concentrations, however, there are no significant changes in bilayer structure at 95% confidence levels. We briefly review the literature previously used to support lipid bilayer hypotheses of general anaesthesia. We conclude that the lipid bilayer per se is not the primary site of action of general anaesthetics.  相似文献   

7.
Solute partitioning into lipid bilayer membranes   总被引:7,自引:0,他引:7  
L R De Young  K A Dill 《Biochemistry》1988,27(14):5281-5289
We have measured the membrane/water partition coefficients of benzene into lipid bilayers as a function of the surface density of the phospholipid chains. A simple 2H NMR method was used for the measurement of surface densities; it is shown to give results similar to those obtained from more demanding X-ray diffraction measurements. We observe that benzene partitioning into the bilayer is dependent not only on the partitioning chemistry, characterized by the oil/water partition coefficient, but also on the surface density of the bilayer chains. Increasing surface density leads to solute exclusion: benzene partitioning decreases by an order of magnitude as the surface density increases from 50% to 90% of its maximum value, a range readily accessible in bilayers and biomembranes under physiological conditions. This effect is independent of the nature of the agent used to alter surface density: temperature, cholesterol, and phospholipid chain length were tested here. These observations support the recent statistical thermodynamic theory of solute partitioning into chain molecule interphases, which predicts that the expulsion of solute is due to entropic effects of the orientational ordering among the phospholipid chains. We conclude that the partitioning of solutes into bilayer membranes, which are interfacial phases, is of a fundamentally different nature than partitioning into bulk oil and octanol phases.  相似文献   

8.
The transient membrane lipid diacylglycerol (DG) is known to modify and destabilize phospholipid bilayers and can lead to the formation of nonbilayer structures. Since cholesterol forms a major fraction of many plasma membranes, we have investigated how it modifies the structural effects of DG on bilayers of egg phosphatidylcholine (PC) and egg phosphatidylethanolamine (PE). We view these systems as modelling the behaviour of local, DG-containing sites in membranes. Using X-ray diffraction, we have characterized the lamellar (L alpha) and inverse hexagonal (HII) structures that these ternary lipid mixtures form in excess aqueous solution. As the DG level increases, the lipid progresses from a single L alpha structure to a mixture of L alpha and HII, and then to a pure HII structure. This allows determination of the DG levels at which the HII transition begins, which we interpret as those levels that destabilize bilayers. In both PC and PE bilayers, the presence of 30 mol% cholesterol reduces the amounts of DG required to destabilize the bilayer structure. The destabilization can be translated into the number of neighbouring lipid molecules that a DG molecule perturbs, and of bilayer areas that it affects. The data show that the presence of cholesterol greatly enhances the perturbing effects of DG. We examine the possible role of DG in enzyme activation and membrane fusion.  相似文献   

9.
Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition (L kappa----L lambda) at temperatures similar to the L beta'----(P beta')----L alpha transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. The L kappa phase shows typical gel-phase X-ray diffraction patterns. In contrast, the L lambda-phase diffraction patterns indicate disordered hydrocarbon chains. 2H NMR of specifically 2H chain-labeled DPPC confirmed that the acyl chains are disordered in the L lambda phase over their entire lengths. 2H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and 13C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicating very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. We postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluidity of the hydrophobic region in the L lambda phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms.  相似文献   

10.
Thermal, structural, and cohesive measurements have been obtained for both bovine brain sphingomyelin (BSM) and N-tetracosanoylsphingomyelin (C24-SM) in the presence and absence of cholesterol. A goal of these experiments has been to clarify the mechanisms responsible for the strong interaction between sphingomyelin and cholesterol. Differential scanning calorimetry shows that fully hydrated bilayers of BSM and C24-SM have main endothermic phase transitions at 39 and 46 degrees C, respectively, that reflect the melting of the acyl chains from a gel to a liquid-crystalline phase. For each lipid, the addition of cholesterol monotonically reduces the enthalpy of this transition, so that at equimolar cholesterol the transition enthalpy is zero. The addition of equimolar cholesterol to either BSM or C24-SM coverts the wide-angle X-ray diffraction reflection at 4.15 A to a broad band centered at 4.5 A. Electron density profiles of gel-phase C24-SM bilayers contain two terminal methyl dips in the center of the bilayer, indicating that the lipid hydrocarbon chains partially interdigitate so that the long saturated 24-carbon acyl chains in one monolayer cross the bilayer center and appose the shorter sphingosine chains from the other monolayer. The incorporation of cholesterol adds electron density to the hydrocarbon chain region near the head group and removes the double terminal methyl dip. These wide- and low-angle X-ray data indicate that cholesterol packs into the hydrocarbon chain region near the sphingomyelin head group, fluidizes the methylene chains near the center of the bilayer compared to the gel phase, and reduces the extent of methylene chain interdigitation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Lipid suspensions containing 2:1:1 skin ceramides:palmitic acid:cholesterol, similar to the lipid composition found in the extracellular matrix of skin stratum corneum, were analyzed by X-ray diffraction methods. These suspensions gave a sharp wide-angle reflection at 4.1 A, indicating tight hydrocarbon chain packing that would function as a water barrier, and low-angle lamellar diffraction with a repeat period near 130 A, similar to that previously recorded from intact stratum corneum. The lamellar repeat increased from 121 A at pH 6 to 133 A at pH 8.5, allowing phase angles of the lamellar data to be obtained by a sampling theorem "swelling" analysis. Electron density profiles showed that each repeating unit contained two asymmetric bilayers, with a fluid space on one side of the bilayer that increased with increasing pH, due to electrostatic repulsion between bilayers because of ionization of the palmitic acid. Profiles obtained from lamellae with cholesterol sulfate partially substituted for cholesterol showed large density increases on that same side of the bilayer, indicating that cholesterol is asymmetrically distributed in each bilayer. A molecular model was developed postulating that this asymmetry is due to the exclusion of cholesterol from lipid monolayers containing the ester-linked unsaturated (linoleic) hydrocarbon chain of skin ceramide 1. This model can explain the altered organization of extracellular lamellae in epidermal cysts (P. W. Wertz, D. C. Swartzendruber, K. C. Madison, D. T. Downing. 1987. J. Invest. Dermatol. 89:419-425) where the ester-linked chains have a higher percentage of saturated fatty acids than found in normal epidermis.  相似文献   

12.
Pressure versus distance relationships have been obtained for egg phosphatidylcholine bilayers containing a range of cholesterol concentrations. Water was removed from between adjacent bilayers by the application of osmotic pressures in the range of 0.4-2600 atm (4 x 10(5)-2.6 x 10(9) dyn/cm2), and the distance between adjacent bilayers was obtained by Fourier analysis of X-ray diffraction data. For applied pressures up to about 50 atm and bilayer surface separations of 15-5 A, the incorporation of up to equimolar cholesterol has little influence on plots of pressure versus bilayer separation. However, for the higher applied pressures, cholesterol reduces the interbilayer separation distance by an amount that depends on the cholesterol concentration in the bilayer. For example, the incorporation of equimolar cholesterol reduces the distance between bilayers by as much as 6 A at an applied pressure of 2600 atm. At this applied pressure, electron density profiles show that the high-density head-group peaks from apposing bilayers have merged. This indicates that equimolar concentrations of cholesterol spread the lipid molecules apart in the plane of the bilayer enough to allow the phosphatidylcholine head groups from apposing bilayers to interpenetrate as the bilayers are squeezed together. All of these X-ray and pressure-distance data indicate that, by reducing the volume fraction of phospholipid head groups, cholesterol markedly reduces the steric repulsion between apposing bilayers but has a much smaller effect on the sum of the longer ranged repulsive hydration and fluctuation pressures. Increasing concentrations of cholesterol monotonically increase the dipole potential of egg phosphatidylcholine monolayers, from 415 mV with no cholesterol to 493 mV with equimolar cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.  相似文献   

14.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

15.
The association of ethanol with unilamellar dimyristoyl phosphatidylcholine (DMPC) liposomes of varying cholesterol content has been investigated by isothermal titration calorimetry over a wide temperature range (8-45 degrees C). The calorimetric data show that the interaction of ethanol with the lipid membranes is endothermic and strongly dependent on the phase behavior of the mixed lipid bilayer, specifically whether the lipid bilayer is in the solid ordered (so), liquid disordered (ld), or liquid ordered (lo) phase. In the low concentration regime (<10 mol%), cholesterol enhances the affinity of ethanol for the lipid bilayer compared to pure DMPC bilayers, whereas higher levels of cholesterol (>10 mol%) reduce affinity of ethanol for the lipid bilayer. Moreover, the experimental data reveal that the affinity of ethanol for the DMPC bilayers containing small amounts of cholesterol is enhanced in the region around the main phase transition. The results suggest the existence of a close relationship between the physical structure of the lipid bilayer and the association of ethanol with the bilayer. In particular, the existence of dynamically coexisting domains of gel and fluid lipids in the transition temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol intoxication.  相似文献   

16.
Amiodarone is a drug used in the treatment of cardiac arrhythmias and is believed to have a persistent interaction with cellular membranes. This study sought to examine the structure and location of amiodarone in a membrane bilayer. Amiodarone has a high membrane partition coefficient on the order of 10(6). Small angle x-ray diffraction was used to determine the position of the iodine atoms of amiodarone in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under conditions of low temperature and hydration where the DPPC bilayer is in the gel state. The time-averaged position of the iodine atoms was determined to be approximately 6 A from the center (terminal methyl region) of the lipid bilayer. A dielectric constant of kappa = 2, which approximates that of the bilayer hydrocarbon core region, was used in calculating a minimum energy structure for membrane-bound amiodarone. This calculated structure when compared with the crystal structure of amiodarone demonstrated that amiodarone could assume a conformation in the bilayer significantly different from that in the crystal. The results reported here are an attempt to correlate the position of a membrane-active drug in a lipid bilayer with its time-averaged conformation. This type of analysis promises to be of great use in the design of drugs with greater potency and higher specificity.  相似文献   

17.
Effects of N-dodecyl-N,N-dimethyl-N-benzylammonium halides (DBeAX) on thermotropic phase behavior of phosphatidylcholine/cholesterol bilayers as well as on 1H NMR spectra were studied. The surfactants were added either to the water phase or directly to the lipid phase (a mixed film was formed). The benzyl group, opposite to liposomes without cholesterol, is not incorporated into the bilayer in the gel state but only in the liquid state. All the halides DBeAX (particularly the chloride DBeAC) showed greater ability to destabilize the membrane structure in the presence than in the absence of cholesterol. The interaction of DBeAX with DPPC/cholesterol bilayers and subsequent changes in the phospholipid bilayer organization depended on the kind of counterion. The strongest effects were observed for chloride (most electronegative ion) and for iodide (largest ion). The effects of chloride and bromide on phase transition and 1H NMR spectra in the presence and absence of cholesterol were opposite. This is discussed in terms of the influence of counterions on the pair cholesterol-DPPC interactions.  相似文献   

18.
We have examined the phase diagram of dipalmitoylphosphatidylcholine (DPPC)--cholesterol-water mixtures at low cholesterol content, and report phase separation between 3 and 10 mol% cholesterol. The two lamellar phases at equilibrium in this region appear to be pure DPPC and 11 mol% cholesterol in DPPC. For these two lamellar phases, which are made up of alternating layers of water and bimolecular lipid leaflets, we have measured the forces of interaction between leaflets and the lateral pressure and compressibility of the leaflets. Both bilayers experience a strong repulsive force when forced together only a few ?ngstr?ms (1 A = 0.1 nm) closer than their maximum separation in excess water. However, the presence of 11 mol% cholesterol causes the bilayers to move apart of 35-A separation from the 19-A characteristic of pure DPPC in excess water. This swelling may result from a decrease in van der Waals attraction between bilayers or from an increase in bilayer repulsion. Differences in bilayer interaction can be a cause for phase separation. More importantly these differences can cause changes in the composition of regions of membranes approaching contact. At 11 mol%, cholesterol substantially increases the lateral compressibility of DPPC bilayers leading to higher lateral density fluctuations and potentially higher bilayer permeability.  相似文献   

19.
The nonspecific interaction of thiopental with erythrocyte ghosts, synaptic membranes, microsomes and mitochondria has been measured at 25°C and pH 6.6. In cholesterol-depleted erythrocyte ghosts the partition coefficient decreases with increasing cholesterol content. In sonicated liposomes made from egg lecithin and cholesterol the partition coefficient also decreases with increasing cholesterol content. The dependence of the partition coefficient on cholesterol content in the biological membranes, on average, parallels that in the lipid bilayers. The partition coefficient in lipid bilayers made from lipids extracted from erythrocyte ghosts was comparable to that in the corresponding egg lecithin/cholesterol bilayer. The partition coefficients of all the biomembranes are consistently lower than those in the corresponding egg lecithin/cholesterol bilayer, the free energy of transfer between biomembrane and corresponding bilayer being ?1 kcal/mol.  相似文献   

20.
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1–C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号