首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AMP-activated protein kinase (AMPK) plays a key role in the regulation of energy homeostasis within the individual cell. Recent reports have suggested that leptin, an adipocyte-secreted hormone, phosphorylates AMPK in skeletal muscle directly. However, little is known about the interaction between leptin signaling and AMPK activation. Here, we report that the leptin-induced phosphorylation of AMPK was detected in Huh7 cells expressing long form leptin receptor (OBRb) as well as short form leptin receptor (OBRa). In addition, we demonstrate that AMPK activation does not require the phosphorylation of either Tyr-985 or Tyr-1138 within the OBRb and may occur via a STAT3-independent signaling pathway. We also show that Huh7 cells expressing OBRb and SOCS3 (inhibitor of JAK2) resulted in a marked reduction of AMPK activation in response to leptin. These findings suggest that the activation of JAK2, but not STAT3, may play a critical role in leptin-induced AMPK activation in Huh7 cells.  相似文献   

2.
3.
4.
5.
J D Lechleiter  D A Dartt  P Brehm 《Neuron》1988,1(3):227-235
The action of vasoactive intestinal peptide (VIP) on Ca2(+)-dependent K+ currents, in dissociated mouse lacrimal cells, was investigated using patch clamp techniques. In whole cell recordings, VIP (10-100 pM) increased the magnitude of the Ca2(+)-dependent K+ current. In single channel recordings, VIP increased the fraction of time the large charybdotoxin-sensitive Ca2(+)-activated K+ channel spent in the open state. The activity of this channel was also increased by adding forskolin or 8-bromo cAMP to the bath. Additionally, application of either cAMP or catalytic subunit of cAMP-dependent protein kinase directly to the cytoplasmic surface of excised inside out patches reversibly lengthened the time Ca2(+)-activated K+ channels spent in the open state. These data suggest that VIP stimulates Ca2(+)-activated K+ channels by a cAMP-dependent pathway in mouse lacrimal acinar cells.  相似文献   

6.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

7.
Tyrosine kinase 2 (TYK2) is required for signaling of interleukin-23 (IL-23), which plays a key role in rheumatoid arthritis. Presented is the design and synthesis of 1,2,4-triazoles, and the evaluation of their inhibitory activity against the Janus associated kinases TYK2 and JAKs 1-3.  相似文献   

8.
9.
10.
11.
12.
13.
D L Silver  D J Montell 《Cell》2001,107(7):831-841
The JAK/STAT signaling pathway, renowned for its effects on cell proliferation and survival, is constitutively active in various human cancers, including ovarian. We have found that JAK and STAT are required to convert the border cells in the Drosophila ovary from stationary, epithelial cells to migratory, invasive cells. The ligand for this pathway, Unpaired (UPD), is expressed by two central cells within the migratory cell cluster. Mutations in upd or jak cause defects in migration and a reduction in the number of cells recruited to the cluster. Ectopic expression of either UPD or JAK is sufficient to induce extra epithelial cells to migrate. Thus, a localized signal activates the JAK/STAT pathway in neighboring epithelial cells, causing them to become invasive.  相似文献   

14.
15.
Vascular endothelial cells release proteinases that degrade the extracellular matrix, thus enabling cell migration during angiogenesis and vasculogenesis. Endothelial cells secrete mainly the proform of matrix metalloproteinase-2 (proMMP-2). In this report, we examined several growth factors, cytokines, and other molecules for activation of MMP-2 by human umbilical vein endothelial cells. Of these factors, we found that lipopolysaccharide (LPS) is the strongest activator of MMP-2. LPS induced MMP-2 activation in a time- and dose-dependent manner. While pretreatment with zinc chelators or nuclear factor kappaB (NF-kappaB) inhibitors suppressed LPS-induced MMP-2 activation, pretreatment with phosphatidylinositol 3'-kinase inhibitors had no effect. These results indicate that, in endothelial cells, LPS can directly enhance angiogenesis by inducing MMP-2 activation mediated through an NF-kappaB pathway.  相似文献   

16.
17.
Lee SJ  Bae SS  Kim KH  Lee WS  Rhim BY  Hong KW  Kim CD 《FEBS letters》2007,581(22):4189-4194
To understand the role of adventitial fibroblasts (AF) in diabetic vascular diseases, the importance of high glucose (HG, 25mM) on matrix metalloproteinase-2 (MMP-2) production in AF was determined. HG enhanced mRNA, protein and gelatinolytic activity of MMP-2. The enhanced MMP-2 activity was significantly attenuated not only by a PI3K inhibitor but also by an Akt inhibitor. These HG-induced MMP-2 responses were markedly reduced in Akt1-deficient (1KO) cells. The diminished HG-induced MMP-2 responses were completely restored by re-expression of Akt1. Both the reporter activity and electrophoretic mobility shift assay for activator protein-1 and nuclear factor-kappa B (NF-kappaB) were enhanced by HG, but NF-kappaB were not increased in 1KO cells. Furthermore, HG-induced MMP-2 responses were markedly suppressed by NF-kappaB decoy oligodeoxynucleotides. Based on these results, it is suggested that HG augments MMP-2 production via PI3K/Akt1/NF-kappaB pathway.  相似文献   

18.
Iron exacerbates various types of liver injury in which nuclear factor (NF)-kappaB-driven genes are implicated. This study tested a hypothesis that iron directly elicits the signaling required for activation of NF-kappaB and stimulation of tumor necrosis factor (TNF)-alpha gene expression in Kupffer cells. Addition of Fe2+ but not Fe3+ (approximately 5-50 microM) to cultured rat Kupffer cells increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Cu+ but not Cu2+ stimulated TNF-alpha protein release and promoter activity but with less potency. Fe2+ caused a disappearance of the cytosolic inhibitor kappaBalpha, a concomitant increase in nuclear p65 protein, and increased DNA binding of p50/p50 and p65/p50 without affecting activator protein-1 binding. Addition of Fe2+ to the cells resulted in an increase in electron paramagnetic resonance-detectable.OH peaking at 15 min, preceding activation of NF-kappaB but coinciding with activation of inhibitor kappaB kinase (IKK) but not c-Jun NH2-terminal kinase. In conclusion, Fe2+ serves as a direct agonist to activate IKK, NF-kappaB, and TNF-alpha promoter activity and to induce the release of TNF-alpha protein by cultured Kupffer cells in a redox status-dependent manner. We propose that this finding offers a molecular basis for iron-mediated accentuation of TNF-alpha-dependent liver injury.  相似文献   

19.
20.
Nuclear factor kappa B (NF-kappaB) is a key mediator of inflammation. Unchecked NF-kappaB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1-binding protein 1 (TAX1BP1) is a negative regulator of TNF-alpha- and IL-1beta-induced NF-kappaB activation and that binding to mono- and polyubiquitin by a ubiquitin-binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF-kappaB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age-dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF-alpha and IL-1beta. TAX1BP1-/- cells are more highly activated for NF-kappaB than control cells when stimulated with TNF-alpha or IL-1beta. Mechanistically, TAX1BP1 acts in NF-kappaB signalling as an essential adaptor between A20 and its targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号