首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.  相似文献   

2.
This study was conducted to evaluate the effect of oxygen tension during IVM and/or IVC on developmental competence of porcine follicular oocytes. Prospective, randomized experiments were designed, and oocytes were matured, inseminated and cultured in vitro in the designated condition. In experiment 1, either high (20%) or low (7%) oxygen tension was used for IVM. The high oxygen significantly improved blastocyst formation (23% versus 13%; P<0.01) after IVF than the low oxygen. Such treatment, however, did not significantly (P>0.05) improve the rates of nuclear maturation (89% in each treatment), sperm penetration (62-72%), monospermic fertilization (56-67%), pronuclear formation (90-96%), cleavage (49-53%) and blastocyst cell number (31-32 cells). In experiment 2, the combined effect of oxygen tension during IVM and IVC of embryos was evaluated by a 2 x 2 factorial arrangement. Again, the high oxygen tension during IVM supported blastocyst formation more efficiently (P<0.01) than the low oxygen, and this was independent of oxygen tension during IVC (26-28% versus 15-16%). In oocytes matured under the high oxygen, a tendency to increase blastomere number (P=0.0630) was found, when the low oxygen was used for IVC after insemination (39-45 cells/blastocyst). In conclusion, the use of high oxygen tension (20% maintained by exposure to 5% CO2 in air) for IVM of porcine oocytes promoted blastocyst formation in vitro.  相似文献   

3.
The objective of this study was to develop a simple and portable CO2 incubator using effervescent granules (EG) and to examine the effect of negative and positive air pressure for in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of bovine oocytes. In experiment 1, cumulus-oocyte complexes (COCs) were matured (22 h), fertilized (5 h) and cultured (7 days) using 0.25, 0.5 or 1.0 g of EG per 0.6 l added to maintain an optimum level of CO2 (approximately 3, 6 or 12%, respectively) for in vitro production of embryos. Control oocytes, zygotes and embryos were cultured in a standard CO2 incubator. The blastocyst production rates observed on Days 7 to 9 after insemination were 20.5+/-4.2%, 18.5+/-3.9% and 28.7+/-5.1% for the 0.25 g EG, 0.5 g EG treatments and control, respectively. These rates were significantly higher (P < 0.05) than that of the 1.0 g EG treatment (8.7+/-2.6%). The number of cells in the inner cell mass (ICM) and trophectoderm (TE) produced from blastocysts using the control procedure were 40.8+/-2.9 and 81.2+/-5.3, respectively, and were higher (P < 0.05) compared to the 0.50 g EG (34.6+/-2.9 and 66.8+/-5.7) and 1.0 g EG treatments (33.4+/-3.4 and 67.2+/-7.3). In experiment 2, COCs were placed in a small box with 0.25 g of EG so that the effects on IVM, IVF and IVC of positive or negative air pressure could be compared. The blastocyst production rate observed in the negative air pressure treatment (29.6+/-4.6%) was higher (P < 0.01) than that of the positive air pressure treatment (6.2+/-1.5%) or the normal treatment pressure (P < 0.05; 18.7+/-4.2%) but did not differ from that of the control (30.7+/-4.4%). These results indicate that this simple type of incubator with negative air pressure can be successfully used for in vitro production of bovine embryos and could be used at the field level.  相似文献   

4.
Development of bovine embryos derived from in vitro-matured/in vitro-fertilized (IVM/IVF) oocytes was examined in two culture media: hamster embryo culture medium (HECM), a relatively simple, chemically defined, protein-free medium containing 20 amino acids; and tissue culture medium (TCM)-199, a more complex medium designed for culture of somatic cells. The first experiment studied (1) effects of glucose and/or phosphate (Pi) using HECM and (2) the development of bovine IVM/IVF embryos in four different conditions: HECM, TCM-199, TCM-199 + 10% unheated bovine calf serum (BCS), and oviduct cell-conditioned TCM-199 + 10% BCS. After IVF, 45% of the inseminated oocytes developed to the morula/blastocyst stages (M&B) when cultured in HECM; blastocyst development was depressed in the presence of glucose and Pi when compared to Pi alone. When the four culture conditions were compared, there was no significant difference in M&B development (42-51% of inseminated oocytes). However, blastocyst development in TCM-199 supplemented with 10% BCS (29.7%) or with BCS + oviduct cell-conditioned medium (21.6%) was significantly greater than in nonsupplemented HECM (9.7%) or TCM-199 (13.8%). In the second experiment, the effects of serum supplementation and/or oviduct cell conditioning on HECM and TCM-199 were examined in a 2 x 2 x 2 factorial experiment. Oviduct cell conditioning of either HECM or TCM-199 without serum supplementation did not enhance bovine embryo development. Serum supplementation exhibited a biphasic effect, with inhibition at the first cleavage and stimulation of morula compaction and blastocyst formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The objectives of this study were 1) to measure cleavage, blastocyst formation, and blastocyst hatching after in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of oocytes aspirated from pregnant versus nonpregnant cows, and 2) to compare embryo development in co-culture with bovine oviductal epithelial cells versus cumulus cells. No differences in cleavage (38 versus 40%), blastocyst formation (13 versus 13%), or blastocyst hatching (53 versus 51%) were observed for in vitro-matured, fertilized, and cultured oocytes from pregnant versus nonpregnant cows, respectively (P > 0.05), indicating that nonpregnant and early-pregnant cows are equally acceptable donors of oocytes for IVM/IVF/IVC procedures. Cleavage (36 versus 40%), blastocyst formation (11 versus 12%), and blastocyst hatching (50 versus 55%) were not different for embryos co-cultured with oviductal epithelial cells versus cumulus cells (P > 0.05). Thus, equivalent embryo development can be obtained with co-culture systems commonly used for in vitro-derived bovine embryos. These results help to define variables that affect comparison of results across laboratories and that are relevant to the practical application of IVM/IVF/IVC procedures to cattle.  相似文献   

6.
Avery  B.  Greve  T. 《Acta veterinaria Scandinavica》1992,33(4):341-348
Because of suboptimal in vitro production of bovine blastocysts a new incubator model (Mini) was tested against the traditional (Heraeus). The difference between their properties seemed only to be the volume of the incubator space. No difference was noted between the CO2 or the temperature, but the data clearly showed a highly significant increase of the blastocyst rates, 6% versus 51% in the Heraeus and the Mini incubator, respectively, calculated as blastocysts per cleaved embryos. It was concluded that the incubator type or model may be a very important part of the in vitro production of bovine embryos, although we were not able to pin point specific causes for this difference.  相似文献   

7.
This study investigated the effects of swainsonine (a locoweed toxin) on bovine preplacentation embryo development using in vitro procedures. We examined and confirmed the viability and developmental potential of swainsonine-treated embryos by transfer to synchronized recipient heifers. Oocytes (n = 6338) were aspirated from ovaries collected from the abattoir and subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). Swainsonine was added to IVM, IVF, IVC media spatially and IVM/IVF/IVC continuously, at 0 ng/ml (TRTI, control), 200 ng/ml (TRT2), 400 ng/ml (TRT3), and 800 ng/ml (TRT4). Embryo development was evaluated with respect to oocyte cleavage rate and the rates of morula and blastocyst formation. There was no difference (P > 0.05) among treatments. The average number of nuclei per blastocyst at Day 7.5 of culture (Day 0 = IVF) was 85.9 +/- 4.3 (n = 47) and 89.3 +/- 4.4 (n = 44) for swainsonine-treated embryos (800 ng/ml) and control embryos, respectively. Pregnancy rate as determined by ultrasonography on day 35 to 40 post embryo transfer was 43.8% and 38.3% for swainsonine-treated (800 ng/ml) and control embryos, respectively. Nine (9.4%) healthy calves were delivered from heifers receiving swainsonine-exposed and nine (9.6%) from control embryos. No difference (P > 0.05) was detected in number of calves developing from TRT and control embryos. We conclude that swainsonine does not have an adverse effect on the development and viability of preplacentation bovine embryos.  相似文献   

8.
Chen N  Liow SL  Yip WY  Tan LG  Ng SC 《Theriogenology》2005,63(8):2300-2310
The need to transport oocytes and embryos between two laboratories have prompted us to evaluate the effects of in vitro maturation of immature mouse oocytes in a CO2-deficient dry heat portable incubator and subsequent in vitro development of these fertilized mouse oocytes in a standard CO2 incubator. In addition, the effects of cysteamine supplementation on maturation rate and embryonic development during in vitro maturation (IVM) and culture of embryos in the portable incubator were also investigated. Germinal vesicle stage mouse oocytes, recovered at 40-h post-FSH from 6- to 8-week-old C57BL/6xCBA F1 healthy female mice, were matured in vitro in a modified TCM-199 supplemented with or without 100 microM cysteamine in a standard incubator (5% CO2; 37 degrees C) or cultured in a CO2-deficient dry heat portable incubator for 5 h at 37 degrees C and thereafter transferred to a standard incubator for further culture. The addition of cysteamine in the IVM medium significantly improved maturation rates of the GV mouse oocytes to metaphase II stage. However, cysteamine supplementation in the culture medium did not significantly improve fertilization and blastocyst formation rates of IVM and ovulated oocytes, and in vivo-derived zygotes. Culture conditions in a CO2-deficient dry heat portable incubator did not adversely affect the developmental competence of in vivo-derived zygotes and in vitro matured mouse oocytes after IVF or parthenogenetic activation. Cysteamine supplement in the IVM medium could enhance nuclear maturation of these immature oocytes during shipment.  相似文献   

9.
Culture of single oocytes throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC) provides detailed information on maturity, fertilizability and developmental capacity of individual bovine oocytes and embryos. In the present study, effects of sperm concentration (Experiment 1), microdrop size (Experiment 2), and the addition of hypotaurine (HT) or glutathione (GSH; Experiment 3) during IVF were investigated. In Experiment 4, in vitro maturity and developmental capacity of bovine oocytes cultured for IVM in a medium supplemented with fetal calf serum (FCS), bovine serum albumin (BSA) or polyvinyl alcohol (PVA) during IVM were investigated. In Experiments 1 to 3, the percentages of normal (2 pronuclei with a spermtail) and polyspermic fertilization in singly cultured oocytes were similar to those of group IVF culture (5 oocytes/drop). The addition of GSH during single oocyte IVF significantly increased the proportion of normal fertilization and decreased the polyspermic fertilization compared with addition of HT or of the control. The rates of mature oocytes (62.4 and 67.7%) and blastocyst development (12.9 and 15.2%) for single oocyte IVM cultures (Experiment 4) were also similar compared with the group culture; PVA supplementation significantly increased the matured oocyte rate, but decreased blastocyst development significantly (7.1%) as compared with FCS (19.5%) or BSA (15.6%). These results indicate that a single oocyte culture system throughout in vitro production of bovine embryos provides similar maturity, fertilizability and developmental capacity to oocytes cultured in groups.  相似文献   

10.
Birth of large calves that developed from in vitro-derived bovine embryos   总被引:2,自引:0,他引:2  
High birth weights were observed in calves that developed from bovine embryos produced by in vitro maturation (IVM) and in vitro fertilization (IVF) procedures. After IVM and IVF, embryos were either co-cultured in vitro with oviductal epithelial cells or transferred into the sheep oviduct for development to the blastocyst stage. Blastocysts were transferred to the reproductive tracts of recipient heifers and cows for development to term. Birth weights and gestation periods were compared between calves that developed from in vitro-derived embryos and calves born after artificial insemination (AI) of cows in the herd from which recipient females were selected. Gestation periods were not different among the groups (P > 0.05), but calves that developed from IVM/IVF-derived embryos co-cultured in vitro were larger at birth than calves born from IVM/IVF-derived embryos that developed into blastocysts in the sheep oviduct and calves born from AI (P < 0.001). Dystocia and calf mortality were associated with large calf size at birth. These data were collected from an experiment designed for other purposes, and confounding variables and small sample size could have influenced the observed differences in birth weights. Nevertheless, the extreme birth weights of some calves suggest that abnormal prenatal growth occurs in some IVM/IVF-derived bovine embryos and that conditions for co-culture to the blastocyst stage may exacerbate the problem.  相似文献   

11.
The effects of various concentrations of ammonia in the media during in vitro fertilization (IVF), culture (IVC), and throughout maturation (IVM), IVF, and IVC were evaluated using a randomized complete block design. Ammonia was added to the media at various concentrations during IVF (experiment 1), during IVC (experiment 2), and throughout IVM, IVF, and IVC (experiment 3). In the first experiment, there was a significant (P<0.05) increase in embryos developed to blastocyst, and to expanding and hatching blastocyst, in IVF media containing moderate concentrations of ammonia compared with that in the IVF control media. In the second experiment, ammonia in the IVC media increased (P<0.05) the proportion of degenerate ova and decreased (P<0.05) the proportion of ova that developed to blastocysts. In experiment 3, cleavage rates tended (P=0.06) to be greater for control groups than for treatment groups. The proportion of ova developing to morula was greater (P<0.05) in media containing moderate concentrations of ammonia than that in the control groups. These results indicate that the effect of ammonia on development of preimplantation bovine embryos depends on the concentration of ammonia and the stage of development when exposure to ammonia occurs.  相似文献   

12.
The aim of these experiments was to investigate the effect of duration of IVM, duration of gamete co-incubation, and of sperm dose on the development of bovine embryos in vitro. In addition, the speed of sperm penetration of six bulls of known differing in vivo and in vitro fertility was examined. In Experiment 1, following IVM for 16, 20, 24, 28 or 32 h, cumulus oocyte complexes (COCs) were inseminated with 1 x 10(6) spermatozoa/ml. After 24 h co-incubation, presumptive zygotes were denuded and placed in droplets of synthetic oviduct fluid (SOF). In Experiment 2, following IVM and IVF, presumptive zygotes were removed from fertilization wells at 1, 5, 10, 15 or 20 h post insemination and placed in culture as described above. In Experiment 3, following IVM, COCs were inseminated with sperm doses ranging from 0.01 x 10(6) to 1 x 10(6) spermatozoa/ml. Following co-incubation for 24 h, presumptive zygotes were placed in culture as described above. In Experiment 4, following IVM, oocytes were inseminated with sperm from six bulls of known differing field fertility. To assess the rate of sperm penetration, oocytes were subsequently fixed every 3 h (up to 18 h) following IVF. Based on the results of Experiment 4, in Experiment 5, following IVM for 12, 18 or 24 h, COCs were inseminated with sperm from two sires with markedly different penetration speeds. After 24 h co-incubation, presumptive zygotes were denuded and placed in culture. The main findings from this study are that (1) the optimal duration of maturation of bovine oocytes in vitro to maximize blastocyst yield is 24 h, (2) sperm-oocyte co-incubation for 10 h is sufficient to ensure maximal blastocyst yields, (3) sperm concentrations of 0.25 x 10(6) and 0.5 x 10(6) spermatozoa/ml yielded significantly more blastocysts than any other concentration within the range of 0.01 x 10(6) 1 x 10(6) spermatozoa/ml, (4) there are marked differences in the kinetics of sperm penetration between sires and this may be a useful predictor of field fertility, and (5) the inferior development associated with slower penetration rates may in part be overcome by carrying out IVF at a time when the actual penetration is most likely to coincide with the completion of maturation.  相似文献   

13.
Resazurin is a redox dye (7-hydroxy-3H-phenoxazin-3-one-10-oxide) used for assessing potential fertility of spermatozoa and functional status of eukaryotic cells. In this study, the fertilizing capacity of spermatozoa treated with resazurin and effects of resazurin on bovine embryo development in vitro was examined. Abattoir-derived bovine oocytes were collected and subjected to in vitro maturation (IVM), fertilization (IVF) and culture (IVC). In Experiment 1, bovine oocytes (n=2767) were fertilized with spermatozoa exposed to resazurin (17.6 μg/ml) for 0, 15, 30, 60 min, respectively. There was no significant (P>0.05) difference with respect to oocyte cleavage, morula and blastocyst production between treatments. In Experiment 2, oocytes (n=1671) were treated with resazurin (1.8 μg/ml) during IVM, IVF, IVC, respectively, or during the entire IVM, IVF and IVC procedures. There was no significant (P>0.05) difference in cleavage rates. However, the proportion of embryos that developed into blastocysts, expanded and hatched blastocysts in those groups in which oocytes/embryos were treated with resazurin during IVC or IVM/IVF/IVC was significantly (P<0.05) less than those exposed to resazurin during IVM only, or during IVF only. We conclude that resazurin did not have significant adverse effects on fertilizing capability of bovine spermatozoa; however, extended treatment of embryos with resazurin may be detrimental to embryonic development.  相似文献   

14.
The objectives of this study were to examine the effect of culture system on bovine blastocyst formation rates and quality. Presumptive IVM/IVF bovine zygotes were cultured either in vitro in synthetic oviduct fluid (SOF, 25 embryos/25 microL in 5% CO2, 5% O2, 90% N2 at 39 degrees C) or in vivo in the ewe oviduct (approximately 100 embryos per oviduct). The recovery rate after in vivo culture was 53% (813/1,530). The blastocyst rate on Day 7 was significantly higher for the in vitro system (28%, 362/1,278 vs 17%, 37/813; P< 0.0001). However, after culture in vitro for a further 24 h, there was no difference in Day 8 yields (36%, 457/1,278 vs 32%, 258/813, for in vitro and in vivo culture, respectively). There was no difference in blastocyst cell number between treatments (Day 7: 96 vs 103; Day 8: 78 vs 85 for in vitro and in vivo culture, respectively). Irrespective of culture system, Day 7 blastocysts had a significantly higher cell number than those appearing on Day 8. There was no difference in pregnancy rate at Day 35 after fresh transfer of a single Day 7 blastocyst (37.5%, 21/56 vs 45.3%/, 24/53 for in vitro and in vivo culture, respectively). After cryopreservation by freezing in 10% glycerol, VS3a vitrification or solid surface vitrification, the survival of in vitro cultured embryos was significantly lower than survival of embryos cultured in the ewe oviduct or those produced by superovulation of donors. In conclusion, these findings demonstrate that while bovine zygotes cultured in vitro are capable of rates of development similar to those of their in vivo cultured counterparts (in terms of Day 8 blastocyst yield, cell number and early pregnancy rate), there are significant differences in embryo cryosurvival. This suggests that current in vitro culture systems need to be improved to optimize embryo quality and pregnancy rates.  相似文献   

15.
The effects of zinc (as ZnCl2) on in vitro production of bovine embryos (IVMFC) and components of the procedure, that is in vitro oocyte maturation (IVM), fertilisation (IVF) and embryo development in culture (IVC), and the effect of added zinc on sperm motility were studied. Immature cumulus oocyte complexes (COCs) were aspirated from ovarian follicles (2-5 mm diameter) at slaughter, and matured, fertilised and cultured in chemically defined conditions. The presence of zinc (10, 100 or 1000 micrograms added per millilitre) throughout IVMFC inhibited fertilisation. After addition of 10 micrograms zinc per millilitre separately to media for IVM and IVF, fertilisation was inhibited only when zinc was present for IVM. When present for IVF, 80% of oocytes selected for IVM reached 2- to 4-cell stages by 46 h after insemination whereas 67% of control oocytes (inseminated without added zinc) cleaved. Higher zinc concentrations (100 and 1000 micrograms added per millilitre) for IVF inhibited fertilisation. Sperm motility was reduced with addition of 10 micrograms per millilitre of zinc for sperm preparation (i.e. capacitation interval). Addition of 1.0 microgram zinc per millilitre to media used through IVMFC, or to the IVC medium alone, resulted in inhibition of development after 2- to 4-cell stages. When added to IVM or to both IVM and IVF media 1.0 microgram/ml of zinc compromised development to the morula stage and beyond. Maturing bovine oocytes may be more sensitive to 1.0 microgram ml of zinc in vitro than in vivo because a concentration of 3.0 micrograms/ml has been reported for bovine follicular fluid. Fertilisation was not adversely affected by 10 micrograms/ml of zinc; however, higher concentrations were inhibitory.  相似文献   

16.
We described an exclusively in vitro procedure for cloning and recloning bovine embryos. Embryos obtained by IVM/IVF/IVC developed to the morula stage were used as blastomere donors in cunjunction with IVM recipient oocytes. Reconstructed embryos were developed in vitro in co-culture using bovine oviductal epithelial cells. The resulting morulae were used as donors for recloning under the same experimental conditions. No significant difference was observed between cloning and recloning in terms of development (rates of blastocysts: 12.9 versus 14.9%), in the number of nuclei per blastocyst (63.8 versus 49.1), or in pregnancy rates (35.7 versus 33.3%). The high variability observed between replicates and the correlation between results in first and second cycle nuclear transfer may suggest an inherant potential of individual donor embryos to support development by cloning.  相似文献   

17.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

18.
A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.  相似文献   

19.
Ali AA  Bilodeau JF  Sirard MA 《Theriogenology》2003,59(3-4):939-949
Antioxidants may be beneficial additives to synthetic culture media because these well defined media lack serum or other macromolecules that serve as reactive oxygen species scavengers. In this study, three separate experiments were performed to determine the effects of antioxidants on the development of oocytes to the morula and blastocyst stage when added during in vitro maturation (IVM) of bovine oocytes, during in vitro fertilization (IVF), and during embryo culture for the first 72 h of the development period. Bovine oocytes were matured, fertilized (under 20% O(2)), and embryos were cultured (under 7% O(2)) in defined conditioned medium in vitro with or without supplementation with the antioxidant cysteine, N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD). Significant improvements in the proportion of oocytes undergoing morula and blastocyst development (33.3% versus 20.3%, P<0.05) were achieved when cysteine (0.6 mM) was added to the maturation medium as compared to control medium without antioxidant supplementation. However, the addition of NAC (0.6mM), catalase (5 or 127 U/ml) or SOD (10 or 1000 U/ml) to the maturation medium did not improve the proportion of oocytes undergoing morula and blastocyst development. During the IVF period, addition of antioxidants (cysteine or NAC 0.6mM, catalase 127U/ml, SOD 100U/ml) significantly reduced the subsequent rate of bovine embryo development to the morula and blastocyst stage (P<0.05). In a defined medium for embryo culture (7% O(2)), the addition of cysteine improved the development of bovine embryos while NAC, catalase and SOD had no positive effect on embryonic development. Our study showed that medium supplementation with cysteine during IVM and in vitro culture (IVC) improved the rate of bovine embryo development, in contrast to extracellular antioxidants like catalase and SOD that caused no improvement.  相似文献   

20.
Bovine oocytes were aspirated from ovaries within 1.6 to 2 hours after slaughter. They were then matured in TCM-199 medium drops under oil in CO(2)/air incubator at 39 degrees C. Spermatozoa were capacitated in SP-TALP medium with heparin. The percentage of embryos that developed in vitro to the 4- and 6- cell stages 48 hours post insemination and then reached the morula or blastocyst stage was 64.3% and 59.2%, respectively, while only 3.6% of the embryos that reached the 2-cell stage became morula or blastocysts. An average of 6.3+/-3.2 total in vitro fertilized embryos per cow were obtained (range 2 to 11). Maturation of bovine oocytes in vitro for 18 or 24 hours did not influence the percentage of cleaved embryos (71.0 and 75.9%, respectively) or that developed to the blastocyst stage (25.6 and 24.2%, respectively). The use of reindeer blood serum for in vitro culture of immature bovine oocytes and of dividing of embryos gave the following results: 57.4% of the oocytes cleaved after fertilization and 16.2% developed further to the blastocyst stage. In contrast in the control group, where cow serum was used, the values were 73.4% and 24.8%, respectively. Rabbit oviduct epithelium cell monolayers were able to support the development of 16.3% of the cleaved bovine embryos to the blastocyst stage as compared with 24.0% of the embryos on cow oviduct epithelium cell monolayers. After nonsurgical transplantation, 12 calves were produced from 91 in vitro fertilized embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号