首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
The ability to parasitise Sclerotinia sclerotiorum and the effect on apothecia production was evaluated for the following antagonists: Trichoderma harzianum; Trichoderma koningii; Gliocladium roseum and Chaetomium globosum. Plastic trays were filled with of steam-sterilized soil. Each one of them was infested with sclerotia of S. sclerotiorum and the culture of the antagonists. The trays were kept in a greenhouse and after 30, 60 and 90 days, evaluations were made. The rates of carpogenic germination, myceliogenic germination, mycoparasitism and destruction were evaluated. To assess carpogenic germination, the sclerotia were put in a growth chamber over moistened filter paper at 20 -/+ 2 degrees C and 12 light hours. The rates of myceliogenic germination and mycoparasitism were evaluated on Petri dishes with 2% APD. Antagonists effect on carpogenic germination was observed one month after the start of the assay. In the evaluation made at 60 and 90 days, T. harzianum; T. koningii and G. roseum kept inhibitory properties. Such inhibition was not observed in the trays containing C. globosum. In the evaluations made at 30 days, mycoparasitism rate was high in the trays with T. harzianum; T. koningii and G. roseum. G. roseum and T. harzianum destroy S. sclerotiorum sclerotia.  相似文献   

2.
Studies were conducted to determine the effects of soil moisture (9, 16 or 24% w/w) and temperature (5, 15, 20 or 25°C) on the control of sclerotia of Sclerotinia sclerotiorum by five fungal agents in sterile and natural field soil. All five biocontrol agents were effective in reducing the survival of sclerotia of S. sclerotiorum in sterile soil under dry (9% moisture) or wet (24% moisture) conditions at 20°C, but only Coniothyrium minitans was effective in natural soil. Coniothyrium minitans was the most effective in reducing sclerotial viability at the temperature range of 15–25°C. Trichoderma virens was effective against sclerotia of S. sclerotiorum to a lesser extent than C. minitans , and in non-autoclaved soil, it performed best at 25°C. Although Epicoccum purpurascens , Talaromyces flavus and Trichothecium roseum were effective against sclerotia of S. sclerotiorum in some instances, they were less effective than C. minitans and T. virens . Sclerotia of S. sclerotiorum conditioned for myceliogenic germination were more vulnerable to attack by the biocontrol agents than dormant sclerotia. The implications are discussed with respect to enhancement of biological control of crop diseases caused by S. sclerotiorum in different geographic regions.  相似文献   

3.
The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAUbiofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAUbiofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.  相似文献   

4.
Menendez AB  Godeas A 《Mycopathologia》1998,142(3):153-160
Two experiments of biological control of Sclerotinia sclerotiorum, one in the greenhouse and the other in the field, were carried out with soybean and Trichoderma harzianum as host and antagonist, respectively. Significant control of disease was achieved in both experiments, but there were no significant differences in plant growths. In the greenhouse, the application of T. harzianum as alginate capsules, increased the survival of soybean plants more than 100% with respect to the disease treatment. In the field, T. harzianum treated plants survived 40% more than those from the disease treatment, showing a similar survival level to control plants. Besides, a significant reduction (62.5%) in the number of germinated sclerotia was observed in the Trichoderma treated plot. Chitinase and 1,3-β- glucanase activities were detected when T. harzianum was grown in a medium containing Sclerotinia sclerotiorum cell walls as sole carbon source. In addition, electrophoretic profiles of proteins induced in T. harzianum showed quantitative differences between major bands obtained in the media induced by S. sclerotiorum cell walls and that containing glucose as a sole carbon source. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Two biocontrol preparations were tested for their ability to control Sphaerotheca fusca and Botrytis cinerea on greenhouse cucumber. Trichoderma harzianum T39 (TRICHODEX) spray reduced powdery mildew severity by up to 97% but its efficacy declined to 18–55% control as the epidemic progressed. Unlike on young leaves, on older leaves the control of powdery mildew by T. harzianum T39 was poor. Ampelomyces quisqualis (AQ10) was very effective against powdery mildew, achieving up to 98% of control. Its effectiveness declined with the progress of the epidemic but unlike the other biocontrol agent it retained significant control capability on older leaves. Two aliphatic petroleum distillate oil products improved the efficacy of both biocontrol agents. The co-application of T. harzianum T39 and A. quisqualis AQ10 was tested on cucumber plants infected with powdery mildew followed by fruit gray mold infection. It resulted in no improvement of the control of powdery mildew, and in an improvement of gray mold control, the latter probably because of the use of additive oil (ADDQ) along with the second biocontrol preparation. There was no significant interference between the biocontrol agents in the co-application treatment as compared with the application of each agent alone; the level of population of T. harzianum T39 remained similar and the parasitism of S. fusca by A. quisqualis was not nullified. The application of T. harzianum T39 to soil instead of spraying it resulted in 75–90% lower powdery mildew coverage on the leaves. It was concluded that the mode of action of T. harzianum T39 in powdery mildew control is induced resistance, not mycoparasitism or antibiotic action.  相似文献   

6.
Burkholderia cepacia AMMDR1 is a biocontrol agent that protects pea and sweet corn seeds from Pythium damping-off in field experiments. The goal of this work was to understand the effect of B. cepacia AMMDR1 on Pythium aphanidermatum and Aphanomyces euteiches zoospore homing events and on infection of pea seeds or roots. In vitro, B. cepacia AMMDR1 caused zoospore lysis, prevented cyst germination, and inhibited germ tube growth of both oomycetes. B. cepacia AMMDR1 also reduced the attractiveness of seed exudates to Pythium zoospores to nondetectable levels. However, when present at high levels on seeds, B. cepacia AMMDR1 had little net effect on zoospore attraction, probably because it also enhanced seed exudation. Seed-applied B. cepacia AMMDR1 dramatically reduced the incidence of infection by Pythium zoospores in situ compared with an antibiosis-deficient Tn5 mutant strain. This mutant strain also decreased Pythium infection incidence to some extent, but only when the pathogen inoculum potential was low. B. cepacia AMMDR1 did not affect attraction of Aphanomyces zoospores or Aphanomyces root rot incidence. These results suggest that B. cepacia AMMDR1 controls P. aphanidermatum largely through antibiosis, but competition for zoospore-attracting compounds can contribute to the effect. Differences in suppression of Aphanomyces and Pythium are discussed in relation to differences in the ecology of the two pathogens.  相似文献   

7.
Among the bacteria and fungi associated from the soil where cowpea was grown and tested for antagonism against Protomycopsis phaseoli , Bacillus sp. inhibited the radial growth, Fusarium oxysporum , yeast, Aspergillus fumigatus , Trichoderma harzianum , Trichoderma koningii and Trichoderma sp. reduced radial growth of P. phaseoli . In vitro studies showed that T. harzianum was an active hyperparasite and more effective in reducing the radial growth of P. phaseoli than T. koningii and Trichoderma sp. Spore suspensions of the three Trichoderma spp. prevented the germination of chlamydospores of P. phaseoli . In the field, when applied as spray, Trichoderma sp. was found to be more active in reducing the spread of leaf smut disease than T. harzianum and T. koningii.  相似文献   

8.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and beta-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

9.
Isolate T39 of Trichoderma harzianum (TRICHODEX) is a commercial biocontrol agent. It controls Botrytis cinerea (grey mould) in greenhouse crops and in vineyards, Sclerotinia sclerotiorum (white mould) in various greenhouse and field crops, Cladosporium fulvum (leaf mould) in tomato, and the powdery mildews Sphaerotheca fusca in cucurbits and Leveillula taurica in pepper. T. harzianum T39 was applied in vineyards and greenhouses as part of grey mould management programmes in alternation with chemical fungicides. In the present study, the effect of T39 on diseases of greenhouse crops was demonstrated. The biocontrol agent was applied in formulations containing two concentrations of the active ingredient, or in the presence of oil in cucumber and tomato greenhouses. Suppression of B. cinerea , C. fulvum and S. sclerotiorum was similar when T39 was applied at final active ingredient rates of 0.2 or 0.4 g l -1 , except for one sampling date in one experiment. The addition of JMS Stylet-Oil did not contribute to the control of the above mentioned diseases achieved by T39.  相似文献   

10.
AIMS: To determine the influence of soil-borne fungus Trichoderma harzianum on the biocontrol performance of Pseudomonas fluorescens strain CHA0 and its 2,4-diacetylphloroglucinol (DAPG) overproducing derivative CHA0/pME3424 against Meloidogyne javanica. METHODS AND RESULTS: Amendment of the culture filtrate (CF) or methanol extract of the CF of a T. harzianum strain Th6 to P. fluorescens growth medium enhanced the production of nematicidal compound(s) by bacterial inoculants in vitro. In addition, bacteria overwhelmingly expressed phl'-'lacZ reporter gene when the medium was amended with CF of T. harzianum. Pseudomonas fluorescens and T. harzianum applied together in unsterilized sandy loam soil caused greater reduction in nematode population densities in tomato roots. CONCLUSIONS: Trichoderma harzianum improves root-knot nematode biocontrol by the antagonistic rhizobacterium P. fluorescens both in vitro and under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic effect of T. harzianum on the production of nematicidal compound(s) critical in biocontrol may improve the efficacy of biocontrol bacteria against plant-parasitic nematodes. Considering the inconsistent performance of the biocontrol agents under field conditions, application of a mixture of compatible T. harzianum and P. fluorescens would more closely mimic the natural situation and might broaden the spectrum of biocontrol activity with enhanced efficacy and reliability of control.  相似文献   

11.
Bean anthracnose caused by Colletotrichum lindemuthianum is a serious seed borne disease. For devising an effective management strategy, the efficacy of different bioagents, viz. Trichoderma viride, Trichoderma harzianum, Trichoderma hamatum and Gliocladium virens conducted under in vitro and in vivo conditions revealed maximum inhibition of mycelial growth in dual culture (59.48%) and inverted plate (55.98%) with T. viride. All the bioagents overgrew the pathogen and the principal mechanism of mycoparisitism observed was coiling, brusting and disintegration of pathogen hyphae. Culture filtrate from T. viride was found best as it completely inhibited radial growth at 25 and 50% concentration and reduced the spore germination of test fungus significantly. However, lower concentrations of culture filtrate from all bioagents showed little effect on spore germination. Seed application of bioagents was found better as compared to soil application. A maximum increase in seed germination and inhibition of seed borne infection was observed with T. viride followed by T. harzianum under pot culture conditions. T. viride has the maximum potentiality to suppress the spore germination, mycelial growth, seed borne infection of C. lindemuthianum and increased seed germination when compared with the other biocontrol agents.  相似文献   

12.
The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.  相似文献   

13.
洞庭湖湿地木霉多样性及生防活性   总被引:1,自引:0,他引:1  
【目的】了解湖南省洞庭湖湿地木霉种类及分布,丰富我国的木霉种质资源,为功能菌株筛选应用奠定基础。【方法】利用ITS序列比对分析结合形态学特征对分离到的木霉菌株进行种类鉴定,构建系统发育进化树分析其亲缘关系。通过菌丝生长速率法测定菌株的平板抑菌能力,根据水解带大小检测菌株的水解酶活性,利用灰色关联度分析筛选综合生防效果较好的木霉菌株。【结果】从52个土样和18个水样中分离得到114株木霉菌株,经鉴定分属16个木霉种类:哈茨木霉、绿木霉、刺孢木霉、土星孢木霉、钩状木霉、拟康宁木霉、短密木霉、深绿木霉、猥木霉、毛细木霉(中国新记录种)、长枝木霉、卵孢木霉、侧耳木霉、加纳木霉、厚木霉及一个疑似新种;哈茨木霉为洞庭湖湿地中的优势种,占总菌株数量的19.30%;16种木霉在系统发育树中归于7个进化支:Harzianum Clade、Virens Clade、Longibrachiatum Clade、Lutea Clade、Viride Clade、Hamatum Clade、Unknown Clade。灰色关联度分析表明,菌株TW21990、QT22040和QT22094的灰色关联度较高,分别为0.849 5、0.798 6和0.732 6,综合生防性状较好。【结论】洞庭湖湿地木霉具有种类多样性和分布多样性,发现了一个中国新记录种毛细木霉和一个疑似新种,哈茨木霉TW21990、长枝木霉QT22040和卵孢木霉QT22094是潜在的优良生防菌株。  相似文献   

14.
A real-time PCR assay using 136F/211R primers and 161T TaqMan probe for the detection and quantification of Aphanomyces euteiches in soil is presented. The specificity of primers was tested on 105 different A. euteiches isolates, mainly from France. A calibration curve was established with a plasmid pHS1 resulting from the target region cloned into the pCR4 Topo vector (Invitrogen). The target copy number was evaluated and was constant whatever the isolate. A DNA-based method was able to discriminate between different artificial infestation levels in soil with small SDs thus validating the relevance of the extraction and amplification method in soil samples. Furthermore, a good correlation was observed between inoculum quantity in soil estimated by qPCR and root rot severity in plant evaluated by bioassays. These steps are essential when considering the feasibility of using a DNA-based method as a fast and accurate way to evaluate inoculum quantity in soil.  相似文献   

15.
Manure pellets produced from processed swine faeces can be used as carrier material for the biocontrol fungus Trichoderma harzianum. The antagonist can grow and sporulate on the processed manure powder as the sole source of carbon and nutrients. The incorporation of conidia in pellets of the processed manure was shown to be feasible on a laboratory scale. Survival of the fungus in the pellets during storage was satisfactory. The population dynamics of T. harzianum were studied using a benomyl-resistance marker after introduction of conidia into soil. The antagonist could colonize and spread through a number of non-sterile soils and was able to establish a stable population over a period exceeding 125 days. Under sterile conditions, the propagation of T. harzianum in soil was much greater than under non-sterile conditions. The incorporation of antagonist conidia in pellets was found to be essential for the successful colonization of non-sterile soil. In growth chamber experiments, application of T. harzianum via processed manure pellets reduced damping-off of sugar beet seedlings caused by Rhizoctonia solani in artificially and naturally infested soil. In artificially infested soil, T. harzianum reduced the population of R. solani and protected beet seedlings from damping-off 3 weeks after introduction. The application of T. harzianum to naturally infested soil increased the number of healthy beet seedlings more than two-fold.  相似文献   

16.
We tested Trichoderma harzianum as a biocontrol agent for Rhizoctonia solani AG2-1, using six natural antifungal materials to improve its efficacy. Among the six materials tested, peony (Paeonia suffruticosa) root bark (PRB) showed the strongest antifungal activity against R. solani AG2-1, and was not antagonistic to T. harzianum. Scanning electron microscopy showed that treatment with PRB extract resulted in shortened and deformed R. solani AG2-1 hyphal cells. The control of radish damping-off caused by R. solani AG2-1 was greatly increased by combined treatments of T. harzianum and PRB, as compared with either of the two treatments alone, with the control effect increased from 42.3-51.5% to 71.4-87.6%. The antifungal compound in PRB, which was isolated in chloroform and identified as paeonol by mass spectrometry, 1H NMR, and 13C NMR analyses, inhibited the growth of R. solani AG2-1 but not that of T. harzianum. Thus, PRB powder or extract may be used as a safe additive to T. harzianum to improve the control of the soil borne diseases caused by R. solani AG2-1.  相似文献   

17.
Sclerotinia sclerotiorum is an important plant pathogen with worldwide distribution that causes severe economic losses of various agricultural crops such as soybean. This fungus is normally controlled with synthetic chemical fungicides that pose risks to the environment, and can be harmful to human health, and they can also induce resistance in pests. The aim of this study was to investigate the potential of Trichoderma asperelloides as a biocontrol agent towards white mold disease on soybeans crops. The antagonism of two strains of T. asperelloides (T25 and T42) isolated from soil samples was determined in-vitro by dual-culture confrontation testing on nine S. sclerotiorum strains obtained from sclerotia collected on diseased soybean plants. The mycelial growth and inhibition of carpogenic and ascospore germination by T. asperelloides extracts, as well as the efficacy of these on white mold control in soybeans were evaluated. Both strains of T. asperelloides exhibited high potential of antagonism. Methanolic and ethyl acetate extracts of the two T. asperelloides strains showed excellent growth inhibition (60–100%) on all of the pathogens tested. The ethyl acetate extracts of both T. asperelloides strains exhibited the highest efficacy against carpogenic germination, decreasing by 20–30% the number of ascospores per apothecium. Strains of T. asperelloides tested were more efficient in controlling white mold than two commercial products made from Trichoderma harzianum. The new strains of T. asperelloides have potential for successful biological control of white mold disease of soybean crops in the field.  相似文献   

18.
Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86% as Trichoderma asperellum, 33.33% as Trichoderma harzianum, 14.29% as Trichoderma tomentosum, 4.76% as Trichoderma koningiopsis, and 4.76% as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen.  相似文献   

19.
Protoplasts were isolated from Trichoderma harzianum strain PTh18 using lysing enzymes and self-fusion of T. harzianum protoplasts was carried out using polyethylene glycol in STC buffer. The fused protoplasts of T. harzianum were regenerated and 15 self-fusants were selected to study the chitinase production and biocontrol activity. High chitinase activity was measured in the culture filtrates of most of the self-fusants (87%) than the parent. Among the fusants, the strain SFTh8 produced maximum chitinase with a two-fold increase as compared to the parent strain. All the self-fusants exhibited increased antagonistic activity against Rhizoctonia solani than the parent. The crude chitinase preparation of SFTh8 lysed the mycelia of T. harzianum, Trichoderma viride and Trichoderma reesei and released the protoplasts in higher number than the crude chitinase preparation of parent strain PTh18.  相似文献   

20.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号