首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of Sendai virus with p-(sec-butyl)-phenyl-6-chloro-6-deoxy-β-d-glucopyranoside, followed by freezing and thawing resulted in a loss of hemolytic and cell fusion activities as well as infectivity without affecting hemagglutinating and neuraminidase activities. The anti-hemolytic activity of this compound was reversed by the addition of phosphatidyl choline to the virus samples. p-Azidophenyl-6-chloro-6-deoxy-β-d-[3H]glucopyranoside was successfully used for photoaffinity labeling of a specific virion site, and we confirmed the affected site of the glucoside to be the lipid components in the viral envelopes.  相似文献   

2.
A variety of analogues and derivatives of phenyl glycosides were synthesized for examination of their biological activities and of the relationship between structure and antiviral activity. For antiviral activity, a 6-deoxy-6-halogeno-D-glucose residue was most suitable for the carbohydrate moiety and p-alkylphenyl groups for the aglycone moiety. Based on these results, p-(sec-butyl)phenyl 6-chloro-6-deoxy-beta-D-glucopyranoside and p-(sec-butyl)phenyl 6-deoxy-6-iodo-beta-D-glucopyranoside were prepared, and the former compound was found to be the most potent antiviral substance, in this series, against influenza and Herpes simplex virus. The anomeric configuration of phenyl glycosides did not contribute to the antiviral activity.  相似文献   

3.
Novel inactivators of serine proteases based on 6-chloro-2-pyrone   总被引:1,自引:0,他引:1  
The interaction of serine protease (esterases) with 6-chloro-2-pyrones was investigated. Time-dependent inactivation of chymotrypsin, alpha-lytic protease, pig liver elastase, and cholinesterase was found with 3- and 5-benzyl-6-chloro-2-pyrone, as well as 3- and 5-methyl-6-chloro-2-pyrone. No inactivation was observed with the unsubstituted 6-chloro-2-pyrone. The substituted pyrones did not inactivate papain or carboxypeptidase A, as well as a number of other nonproteolytic enzymes. The substituted chloropyrones, therefore, show considerable selectivity toward serine proteases. Analogues in which the 6-chloro substituent is replaced by H or OH do not inactivate. The presence of the halogen is, therefore, essential for inactivation. Chymotrypsin catalyzes the hydrolysis of 3-benzyl-6-chloro-2-pyrone. At pH 7.5, (E)-4-benzyl-2-pentenedioic acid is the major product, and 2-benzyl-2-pentenedioic anhydride is a minor product. The ration of hydrolysis product found to the number of enzyme molecules inactivated varies from 14 to 40. The enzyme inactivated with the 3-benzyl compound does not show a spectrum characteristic of the pyrone ring. This suggests that inactivation by 3-benzyl-6-chloro-2-pyrone occurs in a mechanism-based fashion after enzymatic lactone hydrolysis. When the enzyme is inactivated with the 5-benzyl compound, absorbance due to the pyrone ring is observed. We suggest that inactivation occurs through an active site directed mechanism involving a 1,6-conjugate addition of an active site nucleophile to the pyrone ring.  相似文献   

4.
Treatment of Sendai virus with p-azidophenyl-6-chloro-6-deoxy-beta-D-glucopyranoside (APG) caused chemical modification of the viral envelope under UV irradiation, which did not affect the hemagglutinin activity of the virus but inhibited the hemolytic activity. Also, the transfer of phospholipid from the viral envelope to chicken erythrocytes was measured using a spinlabel technique by electron spin resonance (ESR). In this experiment, the phospholipid transfer was depressed by the treatment with APG under the conditions which inhibited the hemolytic activity of the virus. These results suggest that APG bound covalently to lipid may disturb the specific interaction between the protein and the lipid of the viral envelope, resulting in the inhibition of the hemolytic activity. The effects of APG on the hemolysis and phospholipid transfer were compared with the results for the concanavalin A- and amphotericin B-treated viruses.  相似文献   

5.
The protective role of neutrophils on intranasal infection of influenza virus was investigated in 3 strains of tumor-bearing mice with neutrophilic leukocytosis. In vitro multiplication of influenza virus was inhibited by neutrophils from both normal and tumor-bearing mice, and the inhibitory effect of neutrophils was augmented by an addition of fMLP to the culture. Pulmonary virus infectivities in the early phase after infection decreased in such ICR and BALB/c mice, and virus elimination in the late phase was accelerated in the ICR mice. However, no decrease in pulmonary virus infectivity was observed in tumor-bearing C57BL/6 mice. Intranasal administration of fMLP into normal and tumor-bearing C57BL/6 mice after infection significantly inhibited the virus propagation in the lungs. The decrease in neutrophil infiltration into the lung in tumor-bearing C57BL/6 mice was confirmed from histological observations of the lung and lung lavage after infection and from analysis of the neutrophil chemotactic activity induced by fMLP. This might be responsible for the high level of pulmonary virus titer in tumor-bearing C57BL/6 mice. Phagocytic activities of alveolar macrophages and productions of neutralizing antibody were suppressed in the 3 strains of tumor-bearing mice. These observations indicated that neutrophils could be significant effector cells as a host defense mechanism against influenza virus infection in vivo, and infiltration and functional activation of neutrophils could play a significant role in virus elimination from the infected site. Furthermore, the inhibition of virus propagation by neutrophils in vitro was almost completely abrogated by an addition of ZnSO4, suggesting that calprotectin could inhibit influenza virus multiplication.  相似文献   

6.
The multicatalytic proteinase complex (MPC) exhibits three proteolytic activities designated as trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing (PGPHA). Evidence based on inhibitor and specificity studies indicates that each of the three activities is associated with a different component of the complex. Inactivation of the three activities by the serine proteinase inhibitor, 3,4-dichloroisocoumarin (DCI), reveals the presence of an additional DCI-resistant component that cleaves natural peptides including neurotensin, dynorphin, angiotensin II, the oxidized B-chain of insulin, and also proinsulin at a rate greater than that of the native uninhibited complex. Examination of the reaction products of neurotensin (NT) and proinsulin degradation showed cleavage of the Ile12-Leu13 bond in NT and cleavage of the Leu44-Ala45 and Val39-Gly40 bonds within the connecting peptide (C-chain) of bovine proinsulin, suggesting preferential cleavage of bonds on the carboxyl side of branched chain amino acids. Although resistant to inhibition by DCI, the component was sensitive to inhibition by the isocoumarin derivatives, 7-amino-4-chloro-3-[3-(isothioureido)propoxy]isocoumarin and 4-chloro-7-guanidino-3-(2-phenylethoxy)isocoumarin. Degradation of NT was activated by leupeptin, chymostatin, and antipain indicating that binding of these aldehyde inhibitors at one site can stimulate proteolytic activity at a different site of the complex. The DCI-resistant component seems to constitute a major component of the complex active in degradation of natural peptides and proteins.  相似文献   

7.
The inhibition of D-glucose transport into brain by several hexose analogues has been investigated in adult anaesthetized rats. D-Glucose was transported with apparent Vmax. = 1.22 mumol/g per min, Km = 11.12 mM and Kd = 0.008 ml/g per min. 6-Chloro-6-deoxyglucose was transported with corresponding values of Vmax. = 1.33 mumol/g per min, Km = 5.5 mM and Kd = 0.0155 ml/g per min and inhibited D-glucose transport with apparent Ki = 3.01 mM. 6-Chloro-6-deoxymannose, 6-chloro-6-deoxygalactose and 6-tosyl-6-deoxygalactose also inhibited D-glucose transport, but 6-chloro-6-deoxyfructose was without effect. The results were consistent with a model for glucose transport at the blood/brain interface that involves a hydrophobic site on the transport protein at or near the 6-position of bound glucose.  相似文献   

8.
6-Chloro-6-deoxyglucose, 6-chloro-6-deoxymannose, 6-chloro-6-deoxy-fructose, 6-chloro-6-deoxyglucitol, 6-chloro-6-deoxygalactose and (S) alpha-chlorohydrin all produced spermatocoeles in the ductuli efferentes and epididymis of the rat and were neurotoxic in the mouse, but only alpha-chlorohydrin caused substantial inhibition of glucose metabolism in bull spermatozoa in vitro. The relative potencies of the compounds in producing spermatocoeles reflected their activities as reversible antifertility agents in the rat but compared to the others 6-chloro-6-deoxymannose was considerably less neurotoxic to mice than might have been anticipated from its contraceptive dose. Thus different metabolites may be responsible for causing the antifertility and the neurotoxic effects.  相似文献   

9.
A general route for the synthesis of chloromethyl ketone derivatives of fatty acids is described. 5-Chloro-4-oxopentanoic acid, 7-chloro-6-oxoheptanoic acid, 9-chloro-8-oxononanoic acid and 11-chloro-10-oxoundecanoic acid were synthesized by this method and tested as covalent inhibitors of pig heart acetoacetyl-CoA thiolase. The K1 decreased by approx. 20-fold for each pair of methylenes added to the chain length, showing that the initial stage in inhibitor binding occurs at a non-polar region of the protein. This region is probably located at the enzyme active site, since inhibition was prevented by acetoacetyl-CoA or acetyl-CoA but not by CoA. The site of modification by chloromethyl ketone derivatives of fatty acids is restricted to a thiol group, since inactivation of the enzyme was prevented by reversible thiomethylation of the active-site thiol. In contrast, an amino-directed reagent, citraconic anhydride, still inactivated the enzyme, even when the active-site thiol was protected. Evidence that the enzyme thiol was particularly reactive came from studies on the pH-dependence of the alkylation reaction and thiol-competition experiments. Inhibition of the enzyme proceeded suprisingly well at acidic pH values and a 10(5) molar excess of external thiol over active-site thiol was required to prevent inhibition by 0.3 mM-9-chloro-8-oxononanoic acid. In addition to inhibiting isolated acetoacetyl-CoA thiolase, in hepatocytes the chloromethyl ketone derivatives of fatty acids also inhibited chloresterol synthesis, which uses this enzyme as an early step in the biosynthetic pathway. In isolated cells, the chloromethyl ketone derivatives of fatty acids were considerably less specific in their inhibitory action compared with 3-acetylenic derivatives of fatty acids, which act as suicide inhibitors of acetoacetyl-CoA thiolase. However, 9-chloro-8-oxononanoic acid was also an effective inhibitor of both hepatic cholesterol and fatty acid synthesis in mice in vivo, whereas the acetylenic fatty acid derivative, dec-3-ynoic acid, was completely ineffective. The effective inhibitory dose of 9-chloro-8-oxononanoic acid (2.5-5 mg/kg) was substantially lower than the estimated LD50 for the inhibitor (100 mg/kg).  相似文献   

10.
Several substrate analogs were tested for their ability to inhibit bovine pancreatic asparagine synthetase. Of the substrate analogs tested both 6-diazo-5-oxo-L-norleucine (DON) and 5-chloro-4-oxo-L-norvaline (CONV) were shown to inhibit the enzyme strongly. DON inhibited the glutaminase and glutamine-dependent asparagine synthetase activities and CONV inhibited the ammonia-dependent activity as well. Both of these inhibitors appeared to be relatively tight binding since desalting failed to remove the inhibition. The inactivation of bovine pancreatic asparagine synthetase by DON is accompanied by a shift from a 47,000 molecular weight monomer to a 96,000 molecular weight dimer as observed by HPLC gel filtration chromatography. This DON-induced shift is prevented by the presence of the substrate glutamine. A monoclonal antibody known to inhibit specifically the ammonia-dependent and glutamine-dependent asparagine synthetase activities but not glutaminase (monoclonal antibody 2B4) binds to both the monomer and the dimer forms of untreated enzyme, as well as to the dimer form of the DON-inactivated enzyme. On the other hand, a monoclonal antibody known to inhibit specifically the glutaminase and glutamine-dependent activities and not the ammonia-dependent asparagine synthetase (monoclonal antibody 5A6) binds to both forms of untreated enzyme but cannot bind to the DON-inactivated enzyme. These data are used to describe the relation of regions of the active site of asparagine synthetase in relation to antibody binding sites.  相似文献   

11.
The quercetin binding sites on spinach chloroplast coupling factor 1 (CF1) have been investigated using direct and competitive binding, stopped-flow, temperature-jump, and fluorescence resonance energy transfer measurements. It was found that 8-anilino-1-naphthalensulfonic acid (ANS) competes with quercetin binding at two sites on the solubilized enzyme which are distinct from the two tight nucleotide binding sites and the 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reactive site. The bimolecular association of quercetin with CF1 is too fast to measure directly and is followed by two slower conformational changes. The distances from the tight nucleotide sites to the quercetin-ANS sites were estimated as 40-48 A by fluorescence resonance energy transfer using 1,N6-ethenoadenosine diphosphate and 1,N6-ethenoadenylyl imidodiphosphate as donors and quercetin as the acceptor. The distance from the quercetin-ANS site to the NBD-C1 reactive site was found to be about 30 A using ANS as a donor and NBD-C1 reacted with a tyrosine group on CF1 as the energy acceptor. A model is proposed for the relative location of these sites on CF1.  相似文献   

12.
Tobacco (Nicotiana tabacum L., cv. Samsun) leaf discs inoculated with tobacco mosaic virus (TMV) were treated with auxin-like herbicides 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 3-amino-1,2,4-triazol (Amitrol) and 6-chloro-2-ethylamino-4-isopropylamino-1,3,5-triazine (Atrazin). All herbicides in the concentration of 10–7 M enhanced the virus content (MCPA to 227.4 %, Amitrol to 218.1 % and Atrazin to 257.3 % of values found in TMV-infected, herbicide untreated discs). The 2,4-D alone did not affect the activity of the glucose-6-phosphate dehydrogenase and ribonucleases, but the 2,4-D treatment together with TMV infection raised their activities twice as high as in the untreated control discs. Polyacrylamide gel electrophoresis of acidic extracellular proteins washed from leaf discs treated with 2,4-D did not prove the induction of PR-proteins.  相似文献   

13.
The complete series of chloro-, dichloro-, methyl-, dimethyl- and chloro-methyl-ring substituted 2-chloro-3-phenylpropionitriles and several related compounds have been prepared. Their auxin activities have been assessed in the wheat coleoptile, pea segment and pea curvature tests, and the results, which are discussed in relation to molecular structure, support the suggestion by other workers that the observed activity is due to rapid uptake of the nitriles by the plant tissues, followed by metabolism to the corresponding phenylacetic acid. The high growth promoting activity of 2-chloro-3-(3-chloro-2-methyl-phenyl)propionitrile (orthonil) is confirmed but 2-chloro-3-(2,3-dichloro-phenyl)propionitrile and 2-chloro-3-(2,3-dichlorophenyl)butyronitrile are shown to be the most active members of the series.  相似文献   

14.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

15.
Rabbit muscle pyruvate kinase was irreverisbly inactivated by 5-chloro-4-oxopentanoic acid with a pKa of 9.2. The inhibition was time-dependent and was related to the 5-chloro-4-oxopentanoic acid concentration. Analysis of the kinetics of inhibition showed that the binding of the inhibitor showed positive co-operativity (n = 1.5 +/- 0.2). Inhibition of pyruvate kinase by 5-chloro-4-oxopentanoic acid was prevented by ligands which bind to the active site. Their effectiveness was placed in the order Mg2+ greater than phosphoenolpyruvate greater than ATP greater than ADP greater than pyruvate. Inhibitor-modified pyruvate kinase was unable to catalyse the detritiation of [3-(3)H]pyruvate in the ATP-promoted reaction, but it did retain 5-10% of the activity with either phosphate or arsenate as promoters. 5-Chlor-4-oxo-[3,5-(3)H]pentanoic acid was covalently bound to pyruvate kinase and demonstrated a stoicheiometry of 1 mol of inhibitor bound per mol of pyruvate kinase protomer. The incorporation of the inhibitor and the loss of enzyme was proportional. These results are discussed in terms of 5-chloro-4-oxopentanoic acid alkylating a functional group in the phosphoryl overlap region of the active site, and a model is presented in which this compound alkylates an active-site thiol in a reaction that is controlled by a more basic group at the active site.  相似文献   

16.
Suspensions of Nitrosomonas europaea catalyzed the reductive dehalogenation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-trichloromethylpyridine). The product of the reaction was identified as 2-chloro-6-dichloromethylpyridine by its mass fragmentation and nuclear magnetic resonance spectra. A small amount of 2-chloro-6-dichloromethylpyridine accumulated during the conversion of nitrapyrin to 6-chloropicolinic acid in an aerated solution in the presence of ammonia (T. Vannelli and A.B. Hooper, Appl. Environ. Microbiol. 58:2321-2325, 1992). Nearly stoichiometric conversion of nitrapyrin to 2-chloro-6-dichloromethylpyridine occurred at very low oxygen concentrations and in the presence of hydrazine as a source of electrons. Under these conditions the turnover rate was 0.37 nmol of nitrapyrin per min per mg of protein. Two specific inhibitors of ammonia oxidation, acetylene and allylthiourea, inhibited the rate of the dehalogenation reaction by 80 and 84%, respectively. In the presence of D2O, all 2-chloro-6-dichloromethylpyridine produced in the reaction was deuterated at the methyl position. In an oxygenated solution and in the presence of ammonia or hydrazine, cells did not catalyze the oxidation of exogenously added 2-chloro-6-dichloromethylpyridine to 6-chloropicolinic acid. Thus, 2-chloro-6-dichloromethylpyridine is apparently not an intermediate in the aerobic production of 6-chloropicolinic acid from nitrapyrin.  相似文献   

17.
The 126-residue proteinase (PR) of bovine leukemia virus (BLV) was synthesized by solid-phase peptide synthesis and its activity was shown using various oligopeptide substrates representing cleavage sites in BLV, human T-cell leukemia virus type 1 (HTLV-1), murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1). The specificity of the BLV PR was also compared to that of chemically synthesized human immunodeficiency virus type 2 (HIV-2) PR. Many of the peptides were cleaved at the expected site, however, 6 out of 15 were hydrolyzed only by one of the PRs. Furthermore, one BLV peptide was processed differently by the two enzymes. These results, together with the relative activities and the lack of inhibition of BLV PR by two HIV-1 PR inhibitors, suggest that the BLV PR specificity is substantially different from that of HIV PRs.  相似文献   

18.
Previously, it was demonstrated that pancreatic cholesterol esterase is selectively inhibited by 6-chloro-2-pyrones with cyclic aliphatic substituents in the 3-position. Inhibition is reversible and is competitive with substrate. Pancreatic cholesterol esterase is a potential target for treatment of hypercholesterolemia. In the present study, yeast cholesterol esterase from Candida cylindracea (also called C. rugosa CRL3) was compared to porcine pancreatic cholesterol esterase for inhibition by a series of 3-alkyl- or 5-alkyl-6-chloro-2-pyrones. In addition, CRL3 was compared with the related yeast lipase CRL1. Inhibition of CRL3 by substituted 6-chloro-2-pyrones was competitive with binding of the substrate p-nitrophenyl butyrate. Inhibition constants ranged from 0.2 microM to >90 microM. Small changes in the alkyl group had profound effects on binding. The pattern of inhibition of CRL3 is quite distinct from that observed with porcine cholesterol esterase. Molecular modeling studies suggest that the orientation of binding of these inhibitors at the active site of CRL3 can vary but that the pyrone ring consistently occupies a position close to the active site serine. CRL1 is highly homologous to CRL3. Nevertheless, patterns of inhibition of CRL1 by substituted 6-chloro-2-pyrones differ markedly from patterns observed with CRL3. The substituted 6-chloro-2-pyrones are slowly hydrolyzed in the presence of CRL1 and are pseudosubstrates of CRL3, but are simple reversible inhibitors of pancreatic cholesterol esterase  相似文献   

19.
A series of 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-substituted-phenoxy)pyrimidine derivatives were elaborately designed based on the skeleton of Lapatinib, and evaluated for their potential to inhibit epidermal growth factor receptor (EGFR) and ErbB-2 tyrosine kinase activities and antiproliferative activities against A431 and SKOV-3 cell lines. Among these synthesized pyrimidine derivatives, 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-acrylamidophenoxy)pyrimidine (6), 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-cyanoacetamidophenoxy)pyrimidine (9), 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-{3-[6-(4-amino)pyrimidinyl]amino) phenoxy}pyrimidine (11) and 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-phenoxyacetamidophenoxy)pyrimidine (14) could significantly inhibit dual EGFR/ErbB-2 kinase activities (IC(50)=37/29 nM, 48/38 nM, 61/42 nM, 65/79 nM, respectively). And compounds 6 and 11 also showed the most potent antiproliferative activities in vitro, with the IC(50) value of 6 being 3.25 μM for A431 and 0.89 μM for SKOV-3, as for 11, 4.24 μM for A431 and 0.71 μM for SKOV-3, respectively. Docking study was also performed to determine the possible binding model.  相似文献   

20.
Derivatives of Pseudomonas sp. B13 which had acquired the capability to utilize 4-chloro- and 3,5-dichlorobenzoate as a consequence of the introduction of genes of the TOL plasmid of Pseudomonas putida mt-2 were studied. The utilization of these substrates, a property not shared by the parent strains, was shown to depend upon the combined activities of enzymes from the donor and from the recipient. During growth on 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate, predominantly the toluate 1,2-deoxygenase and both dihydrodihydroxybenzoate dehydrogenases of the parent strains were induced. On the other hand, no catechol 2,3-dioxygenase from P. putida mt-2 was detectable, so that degradation of chlorocatechols by the nonproductive meta-cleavage pathway was avoided. Instead of that, chlorocatechols were subject to ortho cleavage and totally degraded by the preexisting enzymes of Pseudomonas sp. B13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号