首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Caspian tern (Hydroprogne caspia) is a globally distributed seabird that breeds throughout North America, generally in low numbers. Many colonies are threatened by habitat loss and pollution. Additionally, adult terns compete directly with salmonid stocking programs on the west coast, where a large proportion of the fish they feed their young are stocked salmon smolts. North America colonies have been classified into five ‘breeding groups’ based on banding data and geography. To help delineate effective management units, we characterized variation in mitochondrial DNA (488 base pair fragment of cytochrome b) and five microsatellite loci among 111 terns from six sites representing three of the North American breeding areas. We found significant range-wide population differentiation (cytochrome b: global ΦST = 0.12, P < 0.01; microsatellites: global FST = 0.094, P < 0.001). Pacific Coast sites differed genetically from sites east of the Rocky Mountains, and sites in Central Canada differed from those in the Great Lakes region. Gene flow among these three regions appears to be restricted. Thus, our results indicate that at least three of the breeding regions delineated using banding data and geography should be treated as separate management units.  相似文献   

2.
We examined the genetic structure of snowy plovers (Charadrius alexandrinus) in North America, the Caribbean, and the west coast of South America to quantify variation within and among breeding areas and to test the validity of three previously recognized subspecies. Sequences (676 bp) from domains I and II of the mitochondrial control region were analyzed for 166 snowy plovers from 20 breeding areas. Variation was also examined at 10 microsatellite loci for 144 snowy plovers from 14 breeding areas. The mtDNA and microsatellite data provided strong evidence that the Puerto Rican breeding group is genetically divergent from sites in the continental U.S. (net sequence divergence = 0.38%; F ST for microsatellites = 0.190). Our data also revealed high levels of differentiation between sites from South America and North America (net sequence divergence = 0.81%; F ST for microsatellites = 0.253). In contrast, there was little genetic structure among breeding sites within the continental U.S. Our results suggest that snowy plovers in Florida should be considered part of C. a. nivosus (rather than part of C. a. tenuirostris, where they are currently placed), whereas snowy plovers from Puerto Rico should be considered part of C. a. tenuirostris. Snowy plovers in South America should remain a separate subspecies (C. a. occidentalis). Although U.S. Pacific and Gulf Coast breeding areas were not genetically distinct from other continental U.S. sites, demographic isolation, unique coastal habitats, and recent population declines suggest they warrant special concern.  相似文献   

3.
We examined population differentiation across a substantial portion of the range of the brown pelican (Pelecanus occidentalis) to assess (1) the genetic distinctness of the Galápagos subspecies (P. o. urinator) and (2) genetic differentiation between subspecies that inhabit the coasts of North and Central America (P. o. californicus and P. o. carolinensis). Birds were sampled from coastal California, coastal Florida, and the Galápagos Islands. Using a 957 bp (bp) fragment of the NADH dehydrogenase subunit 2 (ND2) gene, 661 bp of the mitochondrial control region, and eleven microsatellite loci we characterize population genetic differentiation among 158 brown pelicans. The Galápagos subspecies is genetically distinct from the sampled continental subspecies, possessing a unique ND2 haplotype and unique mitochondrial control region haplotypes. Samples from the two continental subspecies all possessed the same ND2 haplotype and shared four mitochondrial control region haplotypes. Bayesian clustering in STRUCTURE placed the Galápagos subspecies in a distinct genetic group with high probability, but could not differentiate the continental subspecies from one another. Estimates of migration rates from BayesAss indicated substantial migration between continental subspecies, but no migration between the Galápagos subspecies and either continental subspecies. There are clearly two Evolutionarily Significant Units within the range of the brown pelican, which warrants conservation attention. Further investigation should determine how the un-sampled subspecies (P. o. murphyi and P. o. occidentalis) fit into the broader picture.  相似文献   

4.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

5.
The Double-crested Cormorant (Phalacrocorax auritus) is culled in many states because of the real and presumed damages it inflicts on farmed and recreational fisheries and other ecosystem services. Resident cormorant colonies breeding in the southeastern United States are protected in some areas, so it is important to distinguish these from co-occurring but unprotected migratory cormorants. Migratory P. auritus are likely to contain helminthic parasite communities that differ from those of non-migratory, resident birds, because they will encounter a wider variety of habitats and intermediate host communities during migrations. Here, we document five distinct assemblages of helminth parasites collected from 218 P. auritus culled from 11 sites in Alabama, Minnesota, Mississippi, and Vermont. The assemblages of P. auritus parasites are distinct among many sampling locations and can be used to correctly predict where a host cormorant has been feeding. We provide evidence for mixing of cormorants at a regional scale using discriminant analysis, which suggests there is a single population of migratory cormorants. Furthermore, our models strongly differentiate between migratory and resident P. auritus in the southeastern United States. In conjunction with species-by species latitudinal and longitudinal trends, our models could serve as effective tools for managers interested in both the population control of migratory cormorants and the conservation of non-migratory, resident birds. Finally, parasite counts per host are notoriously variable with many zeros and a few large numbers, leading many researchers to use simple prevalence in their analyses. We show that an intermediate level of data resolution, using species occurrence ranks within individual hosts, behaves well statistically and provides the greatest discrimination among distinct host groupings.  相似文献   

6.
Quantifying patterns of genetic diversity and differentiation among populations of Arctic birds is fundamental for understanding past and ongoing population processes in the Arctic. However, the genetic differentiation of many important Arctic species remains uninvestigated. Here, phylogeography and population genetics were examined in the worldwide population of a small seabird, the little auk (dovekie, Alle alle)—the most numerous avian species of the Arctic ecosystem. Blood samples or feathers were collected from 328 little auks (325 from the nominate subspecies and 3 from the A. a. polaris) in nine main breeding aggregations in the northern Atlantic and one location from the Pacific Ocean. The mtDNA haplotypes of the two subspecies were not segregated into separate groups. Also, no genetic structure was found within the nominate race based on microsatellite markers. The level of genetic differentiation among populations was low yet significant (mean F ST = 0.005). Some pairwise F ST comparisons revealed significant differences, including those involving the most distant Pacific colony as well as among some Atlantic populations. Weak population differentiation following the model of isolation by distance in the little auk is similar to the patterns reported in other high-Arctic bird species, indicating that a lack of distinct genetic structure is a common phenomenon in the Arctic avifauna.  相似文献   

7.
Gene flow between populations in different environmental conditions can be limited due to divergent natural selection, thus promoting genetic differentiation. Elaeocarpus photiniifolia, an endemic tree species in the Bonin Islands, is distributed in two types of habitats, dry scrubs and mesic forests. We aim to elucidate the genetic differentiation in E. photiniifolia within and between islands and between the habitat types. We investigated genotypes of 639 individuals from 19 populations of E. photiniifolia and its closely-related E. sylvestris at 24 microsatellite loci derived from expressed sequence tags. The data revealed genetic differentiation (1) between E. photiniifolia and E. sylvestris (0.307 ≤ F ST ≤ 0.470), (2) between the E. photiniifolia populations of the Chichijima and Hahajima Island Groups in the Bonin Islands (0.033 ≤ F ST ≤ 0.121) and (3) between E. photiniifolia populations associated with dry scrubs and mesic forests in the Chichijima Island Group (0.005 ≤ F ST ≤ 0.071). Principal coordinate analysis and Bayesian clustering analysis also showed that genetically distinct groups were associated with the habitat types, and isolation by distance was not responsible for the genetic differentiation. These findings suggest that E. photiniifolia is divided into genetically differentiated groups associated with different environmental conditions in the Bonin Islands.  相似文献   

8.
Currently, three stocks of sei whales (Balaenoptera borealis) are defined in the North Atlantic; the Nova Scotian, Iceland-Denmark Strait and Eastern North Atlantic stocks, which are mainly based upon historical catch and sighting data. We analyzed mitochondrial control region DNA (mtDNA) sequences and genotypes from 7 to 11 microsatellite loci in 87 samples from three sites in the North Atlantic; Iceland, the Gulf of Maine and the Azores, and compared against the North Pacific using 489 previously published samples. No statistically significant deviations from homogeneity were detected among the North Atlantic samples at mtDNA or microsatellite loci. The genealogy estimated from the mtDNA sequences revealed a clear division of the haplotypes into a North Atlantic and a North Pacific clade, with the exception of one haplotype detected in a single sample from the Azores, which was included in the North Pacific clade. Significant genetic divergence between the North Atlantic and North Pacific Oceans was detected (mtDNA ΦST?=?0.72, microsatellite Weir and Cockerham’s ? = 0.20; p?<?0.001). The coalescent-based estimate of the population divergence time between the North Atlantic and North Pacific populations from the sequence variation among the mtDNA sequences was at 163,000 years ago. However, the inference was limited by an absence of samples from the Southern Hemisphere and uncertainty regarding mutation rates and generation times. The estimates of inter-oceanic migration rates were low (Nm at 0.007 into the North Pacific and at 0.248 in the opposite direction). Although estimates of genetic divergence among the current North Atlantic stocks were low and consistent with the extensive range of movement observed in satellite tagged sei whales, the high uncertainty of the genetic divergence estimates precludes rejection of multiple stocks in the North Atlantic.  相似文献   

9.
Double-crested cormorants (Phalacrocorax auritus) recovered from a demographic bottleneck so well that they are now considered a nuisance species at breeding and wintering grounds across the United States and Canada. Management of this species could be improved by refining genetic population boundaries and assigning individuals to their natal population. Further, recent radio-telemetry data suggest the existence of Interior and Atlantic migratory flyways, which could reduce gene flow and result in substantial genetic isolation. In this study, we used 1,784 individuals collected across the eastern United States, a large panel of microsatellite markers developed for this species, and individuals banded as chicks and recaptured as adults to explore the effects of migratory flyways on population structure, quantify the genetic effects of demographic bottlenecks, and determine whether individuals could be assigned to their natal population based on genotype. We found evidence for genetic population division only along migratory flyways, no evidence of genetic bottlenecks, and mixed effectiveness of assignment tests. Our population structure findings suggest that gene flow is high across large scales; for example, individuals from New York, Minnesota, and Alabama are all in panmixia. We also found that traditional subspecies ranges may not be valid because >1 subspecies was present in single genetic populations. The lack of evidence for genetic bottlenecks also likely underscores the vagility of this species, suggesting that even during demographic bottlenecks, populations were not isolated from allelic exchange. Finally, the failure of assignment tests to consistently perform is likely due in part to imperfect a priori sampling of Atlantic and Interior chicks and the high vagility of adults. We conclude that the demographic bottleneck is not likely to have reduced genetic diversity, and that assignment tests remain unreliable for this species. We recommend double-crested cormorants be managed by flyway. Further development of genomic resources in this species could improve population subdivision resolution, improve assignment tests, and reveal further information on demographic histories. © 2020 The Wildlife Society.  相似文献   

10.
Male double-crested cormorants (Phalacrocorax auritus) perform advertising displays at potential nest locations at spring breeding grounds to attract females. Yet, there is no research on how the frequency of this behaviour changes over time or its association with habitat features. Studies of this behavioural display may provide insight into how birds choose areas for nesting, an important issue given the environmental and societal impacts of dense colonies of cormorants. Advertising behaviour was observed in trees throughout the 2014 nesting season, at six different sampling stations, using both scan sampling (for temporal changes in display frequency) and focal sampling (for temporal changes in four microhabitat variables: tree health, height in tree, nest density and presence of a nest). Advertising data (scans N = 484 birds; focal samples N = 827 birds) were divided into pre-incubation, incubation and chicks-present categories using a breeding chronology dataset. The number of cormorants advertising varied temporally and spatially. Using scan data in a marginal model, we found that the number of cormorants advertising was highest at the beginning of the season (peaking at week 3) and lowest once chicks were present. The GLM (focal data) showed that most cormorants advertised without nests especially past the second week of the season. The model also indicated that cormorants advertised in low nest density trees from pre- to mid-incubation. Contrary to our predictions based on colony expansion over the season, we did not observe an interaction of tree health*time or station*time, which suggests that the advertising display revealed a nest site selection process that was not visible at the population level.  相似文献   

11.
Picea omorika (Pan?.) Purk. is a relict from the Arcto-Tertiary flora with its entire current natural range confined to an area of only 10,000 km2 within the Balkans, a region well known as a Quaternary refugium. We have amplified the second intron of the mitochondrial NADH dehydrogenase subunit1 gene in 200 trees originating from ten natural populations to assess the phylogeographic structure and history of this conifer. Five haplotypes harbouring different numbers of 34-bp minisatellites were detected, revealing haplotypic richness of 3.007 and gene diversities H S = 0.075 and H T = 0.225. More interestingly, despite the very small distribution range of P. omorika and its dispersal by wind, non-random distribution of haplotypes was observed, resulting in an unexpectedly high estimate of population differentiation (G ST = 0.668), and 56.8% of molecular variation assigned to variation among populations. Those findings suggest substantial isolation of populations and their partitioning into two gene pools characterized by different history and levels of genetic diversity, and very limited seed flow in this species (Nm = 0.25). They support the hypothesised early arrival of P. omorika in the Balkan region, and residence within this refugium during several ice ages at least. We demonstrate that the assessment of genetic diversity and structuring are not straightforward in species confined to refugial regions, and that past microvicariance might bias formal phylogeographic (G ST = N ST = 0.668) and isolation-by-distance analysis (r = 0.028, P > 0.05).  相似文献   

12.
Fine-scale genetic structure was investigated in three regional populations of the long-nosed potoroo (Potorous tridactylus) a threatened endemic marsupial. Two populations were from the Australian mainland and one from an island. Populations were sub-sampled at two sites, 6–8 km apart, connected by suitable habitat for dispersal. Factors influencing fine-scale structure were investigated by genotyping 157 individuals at 10 microsatellite loci and sequencing a ~621 bp region of the mtDNA control region. Results indicated that P. tridactylus populations exhibit significant intra-population structure, with significant F ST and Φ ST values recorded between subpopulations. This structure appeared mediated by small neighbourhood size, female philopatry and limited dispersal over 6–8 km, predominantly by males. Results highlighted several important features of P. tridactylus populations that have implications for conservation. Firstly, the small neighbourhood size suggests any investigations of intra-population structure should be conducted on a finer scale (e.g. 25–50 m) than many current monitoring programs. Secondly, the island populations were genetically depauperate, which may reflect processes occurring in many isolated ‘mainland island’ populations. Thirdly, the lower gene flow identified between populations separated by anthropogenically modified habitat suggests P. tridactylus is sensitive to changes in habitat configuration.  相似文献   

13.
The barn owl (Tyto alba) is a non-migratory species widely distributed across much of North America in areas with extensive old-field and grassland habitat and without extensive winter snow cover. We investigated the genetic diversity and phylogeographic patterns of barn owl populations in western North America, ranging from British Columbia (BC) to southern California, and one eastern population from Pennsylvania. We also determined the genetic distinctiveness of a population off the coast of southern California, Santa Barbara Island, as management plans to control the local owl population are being considered to decrease predation rate on the now threatened Scripps’s Murrelet (Synthliboramphus scrippsi). Using 8 polymorphic microsatellite markers (N = 126) and ND2 mitochondrial sequences (N = 37), we found little to no genetic structure among all sampled regions, with the exception of Santa Barbara Island. The BC mainland population, despite its northwestern geographically peripheral location and ongoing habitat degradation, is not genetically depauperate. However, individuals from Vancouver Island, likewise a peripheral population in BC, exhibited the lowest genetic diversity of all sampled locations. The low global FST value (0.028) estimated from our study suggests that old-field agricultural habitats are well connected in North America. Since the BC population has declined by about 50 % within the last three decades, it is vital to focus on preserving the remaining barn owl habitats in BC to allow successful establishment from neighbouring populations. Additionally, our microsatellite data revealed that the population on Santa Barbara Island showed genetic divergence from its continental counterpart. Mitochondrial data, however, demonstrated that this island population is not a monophyletic lineage containing unique haplotypes, and hence cannot be designated as an Evolutionarily Significant Unit.  相似文献   

14.
Subspecies were traditionally defined by identifying gaps between phenotypes across the geographic range of a species, and may represent important units in the development of conservation strategies focused on preserving genetic diversity. Previous taxonomic research proposed that phenotypic variation between scattered Indri indri populations warranted the naming of two distinct subspecies, I. i. indri and I. i. variegatus. We tested these subspecific designations using mitochondrial sequence data generated from the control region or D-loop (569 bp) and a large section (2362 bp) of multiple genes and tRNAs known as Pastorini’s fragment and nuclear microsatellite markers. This study used 114 samples of I. indri from 12 rainforest sites in eastern Madagascar, encompassing the entire range of the species. These genetic samples represent multiple populations from low- and high-elevation forests from both putative subspecies. Molecular analyses of the mitochondrial sequence data did not support the two proposed subspecies. Furthermore, the microsatellite analyses showed no significant differences across the range beyond population level differentiation. This study demonstrates the utility of incorporating multiple lines of evidence in addition to phenotypic traits to define species or subspecies.  相似文献   

15.
The Cantabrian capercaillie (Tetrao urogallus cantabricus) is an endangered subspecies of the Western capercaillie, endemic of northern Spain, inhabiting the south-western limit of the species range. Assessing genetic variability and the factors that determine it is crucial in order to develop an effective conservation strategy. In this work, non-invasive samples were collected in some of the best preserved areas inhabited by Cantabrian capercaillie. Nine microsatellite loci and a sex-specific marker were analysed. We included five zones, separated by valleys with different levels of habitat modifications. No evidence of genetic clustering was found which suggests that fragmentation and development in the area do not act as barriers to gene flow. Nonetheless, significant differences among sampling zones were encountered in terms of their allelic frequencies (global F ST = 0.035, p = 0.001). Pairwise F ST comparisons showed differences between all sampling zones included, except between the two ones located in the South (Degaña and Alto Sil). These findings, along with the results of individual based genetic differences, indicate that gene flow among sampling zones might be at least slightly compromised, except between the two zones located in the South. Despite this, the sampling zones seem to exchange migrants at a rate that prevents genetic differentiation to the point of creating clusters. Our results show that the capercaillies in the study area constitute a single interbreeding group, which is an important piece of information that provides support to better understand the dynamics of this endangered subspecies.  相似文献   

16.
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.  相似文献   

17.
We investigated genetic variation of 273 individuals from 25 populations of the monotypic species Hagenia abyssinica (Rosaceae) from the highlands of Ethiopia at three chloroplast microsatellite loci. The objectives were to infer the factors that shaped the genetic structure and to reconstruct the recolonization history of the species. Six haplotypes that were phylogenetically grouped into two lineages were identified. Homology of the three loci to the respective regions of the chloroplast genome was confirmed by sequencing. The chloroplast haplotypes found in Hagenia showed a clear pattern of congruence between their geographical distribution and genealogical relationships. A very low haplotype diversity within populations (h S = 0.079, v S = 0.058) and a very high population differentiation (G ST = 0.899, N ST = 0.926) was observed, reflecting very low mixing between recolonizing lineages. Restricted gene flow through seeds, rare long-distance dispersal, contiguous range expansion and mutation shaped the genetic structure of Hagenia. Fossil pollen records suggested that the trend of postglacial recolonization of Hagenia was first in the south and latter went to the north in Ethiopia.  相似文献   

18.
Microsatellites and mitochondrial DNA sequences were studied for the two subspecies of orangutans (Pongo pygmaeus), which are located in Borneo (P. p. pygmaeus) and Sumatra (P. p. abelii), respectively. Both subspecies possess marked genetic diversity. Genetic subdivision was identified within the Sumatran orangutans. The genetic differentiation between the two subspecies is highly significant for ND5 region but not significant for 16s rRNA or microsatellite data by exact tests, although F ST estimates are highly significant for these markers. Divergence time between the two subspecies is approximately 2.3 ± 0.5 million years ago (MYA) estimated from our data, much earlier than the isolation of their geological distribution. Neither subspecies underwent a recent bottleneck, though the Sumatran subspecies might have experienced expansion approximately 82,000 years ago. The estimated effective population sizes for both subspecies are on the order of 104. Our results contribute additional information that may be interpreted in the context of orangutan conservation efforts. Received: 13 June 2000 / Accepted: 30 January 2000  相似文献   

19.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

20.
Aim The objective of this study was to reveal the present population structure and infer the gene‐flow history of the Indo‐Pacific tropical eel Anguilla bicolor. Location The Indo‐Pacific region. Methods The entire mitochondrial control region sequence and the genotypes at six microsatellite loci were analysed for 234 specimens collected from eight representative localities where two subspecies have been historically designated. In order to infer the population structure, genetic differentiation estimates, analysis of molecular variance and gene‐tree reconstruction were performed. The history of migration events and population growth was assessed using neutrality tests based on allelic frequency spectrum, coalescent‐based estimation of gene flow and Bayesian demographic analysis using control region sequences. Results Population structure analysis showed genetic divergence between eels from the Indian and Pacific oceans (FST = 0.0174–0.0251, P < 0.05 for microsatellites; ΦST = 0.706, P < 0.001 for control region), while no significant variation was observed within each ocean. Two mitochondrial sublineages that do not coincide with geographical regions were found in the Indian Ocean clade of a gene tree. However, these two sublineages were not differentiated at the microsatellite markers. The estimation of mitochondrial gene‐flow history suggested allopatric isolation between the Indian and Pacific oceans, and a possible secondary contact within the Indian Ocean after an initial population splitting. Bayesian demographic history reconstruction and neutrality tests indicated population growth in each ocean after the Indo‐Pacific divergence. Main conclusions Anguilla bicolor has diverged between the Indian and Pacific oceans, which is consistent with the classical subspecies designation, but is apparently genetically homogeneous in the Indian Ocean. The analysis of gene‐flow and demographic history indicated that the two mitochondrial sublineages observed in the Indian Ocean probably represent the haplotype groups of relict ancestral populations. A comparison with a sympatric congener suggested that absolute physical barriers to gene flow may not be necessary for population divergence in eels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号