首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis‐related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT‐triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease‐inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2O2 and significant induction of some defense‐response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT‐triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2O2 accumulation, cell‐death induction, and defense‐response gene expression were distinctly reduced in CaPR4c‐silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.  相似文献   

5.
Shin R  An JM  Park CJ  Kim YJ  Joo S  Kim WT  Paek KH 《Plant physiology》2004,135(1):561-573
Capsicum annuum tobacco mosaic virus (TMV)-induced clone 1 (CaTin1) gene was expressed early during incompatible interaction of hot pepper (Caspsicum annuum) plants with TMV and Xanthomonas campestris. RNA-blot analysis showed that CaTin1 gene was expressed only in roots in untreated plants and induced mainly in leaf in response to ethylene, NaCl, and methyl viologen but not by salicylic acid and methyl jasmonate. The ethylene dependence of CaTin1 induction upon TMV inoculation was demonstrated by the decrease of CaTin1 expression in response to several inhibitors of ethylene biosynthesis or its action. Transgenic tobacco (Nicotiana tabacum) plants expressing CaTin1 gene in sense- or antisense-orientation showed interesting characteristics such as the accelerated growth and the enhanced resistance to biotic as well as abiotic stresses. Such characteristics appear to be caused by the elevated level of ethylene and H2O2. Moreover, in transgenic plants expressing antisense CaTin1 gene, the expression of some pathogenesis-related genes was enhanced constitutively, which may be mainly due to the increased ethylene level. The promoter of CaTin1 has four GCC-boxes, two AT-rich regions, and an elicitor-inducible W-box. The induction of the promoter activity by ethylene depends on GCC-boxes and by TMV on W-box. Taken together, we propose that the CaTin1 up-regulation or down-regulation interferes with the redox balance of plants leading to the altered response to ethylene and biotic as well as abiotic stresses.  相似文献   

6.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

7.
WRKY转录因子是植物响应病原菌胁迫最重要的转录因子之一,且参与抗病反应及信号传导通路的调控。为研究辣椒WRKY基因的生物学特征,以辣椒高抗疫病材料CM334为试材,克隆获得响应疫霉菌诱导的转录因子CaWRKY14。生物信息学分析表明,该基因DNA全长2 530 bp,cDNA全长1 662 bp,含有5个内含子,编码553个氨基酸,含有1个WRKY保守结构域,属于Group Ⅱ(b)。实时荧光定量表达分析表明,CaWRKY14不仅受ABA和疫霉菌胁迫诱导表达,且表达量分别在12 h和24 h时达到峰值,分别是对照的8.54和8.04倍,同时也受高盐、热激和干旱胁迫诱导。利用VIGS技术对CaWRKY14转录因子进行沉默后发现,抗病材料CM334接种疫霉菌后趋于发病。研究表明,CaWRKY14基因在辣椒响应疫霉菌胁迫进程中可能发挥着重要作用。  相似文献   

8.
Pectate lyase (EC 4.2.2.2) is an enzyme involved in the maceration and soft rotting of plant tissue via degradation of cell wall in organisms. Plants as well as bacteria and fungi are capable of producing pectate lyases. Here we report the cloning of a novel full-length cDNA of pectate lyase gene, designated BPL1, from Brassica napus by rapid amplification of cDNA ends. BPL1 cDNA is 1787 bp containing a 1503 bp ORF encoding a 500 amino acid protein precursor. The protein precursor has a potential signal peptide with 22 amino acids. Alignment of sequences shows that there are some extremely conserved amino acids among pectate lyase-like proteins from different plant species, and novel C-terminal domains are found in Arabidopsis and Brassica. Phylogenetic analysis of 50 pectate lyase-like proteins from various species demonstrates the obvious distinction among pectate lyase-like proteins from plants, bacteria and fungi, which are subsequently clustered into three groups. The cloning of BPL1 enables us to explore its diverse roles in higher plants and potential application in crop improvement.  相似文献   

9.
Ripe fruits of pepper (Capsicum annuum) are resistant to the anthracnose fungus, Colletotrichum gloeosporioides, whereas unripe-mature fruits are susceptible. A pepper esterase gene (PepEST) that is highly expressed during an incompatible interaction between the ripe fruit of pepper and C. gloeosporioides was previously cloned. Deduced amino acid sequence of PepEST cDNA showed homology to both esterases and lipases, and contained -HGGGF- and -GXSXG- motifs and a catalytic triad. Inhibition of PepEST activity by a specific inhibitor of serine hydrolase demonstrated that a serine residue is critical for the enzyme activity. Expression of PepEST gene was fruit-specific in response to C. gloeosporioides inoculation, and up-regulated by wounding or jasmonic acid treatment during ripening. PepEST mRNA and protein was differentially accumulated in ripe vs. unripe fruit from 24 h after inoculation when C. gloeosporioides isinvading into fruits. Immunochemical examination revealed that PepEST accumulation was localized inepidermal and cortical cell layers in infected ripe fruit, but rarely even in epidermal cells in infected unripe one. Over-expression of PepEST in transgenic Arabidopsis plants caused restriction of Alternaria brassicicola colonization by inhibition of spore production, resulting in enhanced resistance against A.brassicicola. These results suggest that PepEST is involved in the resistance of ripe fruit against C.gloeosporioides infection.These authors contributed equally to the work  相似文献   

10.
A putative cytochrome P450 gene from chili pepper, Capsicum annuum L. Bukang cytochrome P450 (CaCYP1), was identified using cDNA microarray analysis of gene expression following induction of the leaf hypersensitive response by inoculation of pepper plants with the non-host pathogen Xanthomonas axonopodis pv. glycines 8ra. The full-length cDNA of CaCYP1 encoded a protein of 514 amino acid residues, which contained a putative hydrophobic membrane anchoring domain in the N-terminal region, and a heme-binding motif in the C-terminal region. Analysis of the deduced amino acid sequence of CaCYP1 revealed that it has high homology to Arabidopsis CYP89A5, the function of which is unknown. Expression of CaCYP1 was preferentially increased in pepper plants in response to non-host pathogen inoculation and also during the host resistance response. CaCYP1 expression also increased following treatment with salicylic acid and abscisic acid, while treatment with ethylene had a mild effect. Using a virus-induced gene silencing-based reverse genetics approach, we demonstrated that suppression of CaCYP1 results in enhanced susceptibility to bacterial pathogens. Interestingly, gene silencing of CaCYP1 in pepper plants resulted in the reduced expression of the defense-related genes CaLTP1, CaSIG4, and Cadhn. Our results indicated that CaCYP1, a novel cytochrome P450 in pepper plants, may play a role in plant defense response pathways that involve salicylic acid and abscisic acid signaling pathways.  相似文献   

11.
Thioredoxins (TRXs) are distributed ubiquitously in prokaryotic and eukaryotic organisms. Plants have the most complex forms of TRXs. The functional roles of such TRXs have been studied in abiotic stress but their roles in plant defense responses against biotic stresses have been less well studied. Here, we identified an h-type TRX gene from pepper, CaTRXh1, and characterized its possible effect on Type II nonhost resistance, which entails localized programmed cell death in response to nonhost pathogens. Peptide sequences of CaTRXh1 showed a high degree of similarity with TRXhs from tobacco and Arabidopsis thaliana. Southern blot analyses revealed that CaTRXh1 was present as a single copy in the pepper genome. Intriguingly, leaf infiltration by Xanthomonas axonopodis pv. glycines 8ra, eliciting a visible type II nonhost hypersensitive response (HR), and its type III secretion-system null mutant 8–13, eliciting a type I nonhost non-HR, both induced CaTRXh1 at a level similar to that of pathogenesis-related protein 4, an HR marker gene in pepper. More surprisingly, expression of CaTRXh1 was significantly increased when X. axonopodis pv. vesicatoria race 3 infiltrated the leaf of a pepper cultivar containing a resistance gene, but not with infiltration of a susceptible pepper cultivar. Taken together, our study suggests that the expression of CaTRXh1 has a critical role in HR-mediated active defense responses in pepper. GenBank accession number: EF371503.  相似文献   

12.
CaTin1 was expressed relatively early in the TMV-inoculated leaves of hot pepper which is resistant to TMV-P(0) infection. Interestingly, there was another homologous gene (CaTin1-2) located in front of CaTin1 in a head-to-head fashion and they shared a single promoter. The expression profile of the CaTin1-2 was very similar to CaTin1 in all the treatments except the slower induction time compared to CaTin1 upon TMV-P(0) inoculation. The promoter analysis of CaTin1 and CaTin1-2 revealed bidirectionality both in cis-elements and activity. The CaTin1-2 promoter had two TATA-boxes, four GCC-boxes, the root responsive element, and a W1-box. The ethylene-inducible promoter activity depended on GCC-boxes and TMV-inducible activity of the CaTin1-2 promoter reached its highest activity when this promoter had a W1-box.  相似文献   

13.
14.
Chung E  Park JM  Oh SK  Joung YH  Lee S  Choi D 《Planta》2004,220(2):286-295
The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.  相似文献   

15.
16.
17.
The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpinpss, an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpinpss-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coliwas able to significantly increase active oxygen species (AOS) generation when mixed with harpinpss in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpinpss in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflpgene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpinpss-mediated hypersensitive cell death in vivo. In response to harpinpss, suspension cells derived from Pflptransgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpinpss-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpinpss inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.  相似文献   

18.
Summary In situ hybridization and immunogold labeling were performed to examine the temporal and spatial expression pattern of pathogenesis-related protein 1 (CABPR1) mRNA and PR-1 protein in pepper (Capsicum annuum L.) stem tissues infected by virulent and avirulent isolates ofPhytophthora capsici. CABPR1 mRNA accumulation was confirmed in the infected pepper stem tissue by Northern blot analysis and in situ hybridization. Northern blot analysis showed that the temporal expression ofCABPR1 mRNA varied greatly between compatible and incompatible interactions. An earlier expression of theCABPR1 gene, 6 h after inoculation, was observed in the incompatible interaction. In situ hybridization results revealed thatCABPR1 mRNA was expressed in the phloem areas of vascular bundles in infected pepper stem tissues, but especially strongly in the incompatible interaction. PR-1 protein was predominantly found in the intercellular spaces of pepper stem cells in the compatible and incompatible interactions 24 h after inoculation. Strikingly, the immunogold labeling was associated with fibrillar and electron-dense material localized in the intercellular space. Dense labeling of PR-1 protein was also seen at the interface of the pathogen and the host cell wall, whereas few gold particles were detected over the host cytoplasm. However, PR-1 protein was not detected over the fungal cell wall in either interaction.  相似文献   

19.
Hot pepper (Capsicum annuum) plants exhibit a hypersensitive response (HR) against infection by many tobamoviruses. A clone (CaPR-4) encoding a putative pathogenesis-related protein 4 was isolated by differential screening of a cDNA library prepared from resistant pepper plant leaves inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaPR-4 is very similar to those of other plant PR-4s. Southern blot analysis showed that small gene families of PR-4-related sequences were present in the pepper genome. Hot pepper cultivar Bugang, resistant to TMV-P0 and susceptible to TMV-P1.2, induced CaPR-4 expression by pathotype P0 inoculation in inoculated and systemic leaves, but not by pathotype P1.2. Effects of exogenously applied abiotic elicitors upon the CaPR-4 expression were also examined. The expression of the CaPR-4 gene was stimulated by methyl jasmonate (MeJA), ethephon and wounding treatment. However, application of salicylic acid (SA) did not trigger the expression. Evidence is emerging that jasmonic acid and ethylene play key roles in the SA-independent pathways of plant-pathogen interaction. Taken together, these results suggest that the CaPR-4 gene is one of the defense-related genes conferring resistance on pepper plants by the SA-independent pathway and the cross-talk between signaling compounds, jasmonic acid and ethylene could have a great regulatory potential in a plant's defense against TMV.  相似文献   

20.
The hypersensitive reaction (HR) in plants is typified by a rapid and localized cell death at the site of pathogen infection. To understand better the molecular and cellular defence mechanism controlling HR, hot pepper leaves (Capsicum annuum cv. Pukang) were inoculated with the soybean pustule pathogen Xanthomonas campestris pv. glycine 8ra. By using the DD-PCR technique, a cDNA fragment was identified that exhibited a sequence similarity to the recently identified tobacco pathogen-induced oxygenase (PIOX) with homology to animal cyclo-oxygenase (COX). Subsequently, the full-length cDNA clone, pCa-COX1, encoding the COX homologue from the pathogen-inoculated hot pepper leaf cDNA library was isolated. The deduced amino acid sequence of Ca-COX1 shares 85.8% identity with tobacco PIOX and displays a significant degree of sequence identity (21.7-23.7%) with mammalian COXs. The expression of Ca-COX1 was markedly induced at 4-12 h after pathogen infection, while HR cell death on pepper leaves appeared at approximately 15 h post-inoculation. These results are consistent with the notion that the lipid-derived signalling pathway is involved in the initial response of hot pepper plants to pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号