首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to evaluate the possible contribution of phospholipase D (PLD) stimulation to the mitogenic response, a screening of a variety of different compounds, some of which are known to be potent mitogens, was performed using the well characterized Chinese hamster lung fibroblast (CCL39) cell line. In wild type CCL39 cells, or derivatives expressing high levels of either the human M1 muscarinic receptor (Hm1) or the human epidermal growth factor (EGF) receptor (39M1-81 and 39ER22 clones, respectively), thrombin, a potent mitogen for all three cell types, elicited the rapid activation of PLD (t1/2 activation, 30 s). Carbachol-mediated activation of the Hm1 receptor in the 39M1-81 clone, which is not a mitogenic signal, produced a similarly rapid although greater activation of PLD. Addition of EGF to the 39ER22 clone was able to provoke both a mitogenic response and stimulate PLD, albeit a comparatively small effect. In each case, the stimulation of PLD correlated closely with the ability to stimulate inositol phospholipid breakdown and was entirely dependent on the activation of protein kinase C. Moreover, the ability of both thrombin and carbachol to stimulate PLD was found to be rapidly desensitized, with a similar time course of desensitization (t1/2 desensitization, 90 s). It has recently been reported that an increase in phospholipase C (PLC)-mediated phosphocholine (PC) hydrolysis by either addition of agonist or by extracellular addition of PC-specific PLC enzyme constitutes a mitogenic signal. In this regard, in addition to stimulation of PLD, thrombin and carbachol were both able to stimulate the activity of a phosphocholine-specific phospholipase C (PC-PLC), which did not appear to desensitize within the time course employed. By contrast, EGF was unable to elicit the stimulation of PC-PLC. Ligands such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), which bind to and activate receptors with intrinsic tyrosine kinase activity, are potent mitogens for CCL39 cells but were unable to stimulate either PLD or PC-PLC activity. Furthermore, exogenous addition of purified PC-PLC enzyme, although able to induce a strong and lasting hydrolysis of PC, was unable to produce a mitogenic signal on its own. On the basis of these results, we conclude that the activation of both PLD and PC-PLC is neither sufficient nor required to produce a mitogenic response.  相似文献   

3.
Activation of phosphoinositide breakdown is thought to be an important signaling pathway involved in the mitogenic effects of alpha-thrombin in Chinese hamster lung fibroblasts. We have previously shown that the initial strong stimulation of inositol phosphate formation induced by thrombin in quiescent hamster cells (CCL39 line) is rapidly attenuated. We now report that this desensitization of phospholipase C to thrombin 1) is independent of protein kinase C activation, because thrombin-induced desensitization normally occurs in cells that have been depleted in protein kinase C by a prolonged treatment with a phorbol ester, and 2) is even independent of phosphoinositide hydrolysis because the desensitization still occurs, although at a lesser degree, at 4 degrees C, in the absence of any phospholipase C activity. Furthermore, phospholipase C desensitization to thrombin is homologous. It does not affect the response to thrombin-free serum or the direct activation by A1F-4 of the GTP-binding protein (G-protein) coupled to phospholipase C. We therefore conclude that the desensitization of phospholipase C to thrombin does not result from an impairment of the G-protein-phospholipase C complex, or from a depletion in phosphoinositides, but rather from a modification of thrombin receptors leading to their uncoupling from G-protein. This modification is slowly reversible because, upon thrombin removal, a prolonged incubation (approximately 2 h) restores responsiveness of the cells to thrombin. Although the desensitization seems to depend on thrombin receptor occupancy, it cannot be accounted for by an internalization of the occupied receptors, because it is not blocked at 4 degrees C. The exact mechanism underlying this homologous desensitization of thrombin receptors remains to be elucidated.  相似文献   

4.
Thrombin-induced platelet aggregation is accompanied by cleavage of aggregin, a surface membrane protein (Mr = 100 kDa), and is mediated by the intracellular activation of calpain. We now find that agents that increase intracellular levels of platelet cAMP by stimulating adenylate cyclase, also inhibit thrombin binding and platelet activation by destabilizing thrombin receptors on the platelet surface. Iloprost (a stable analog of PGI2) and forskolin each completely inhibited platelet aggregation by 2 nM thrombin and markedly decreased cleavage of aggregin. Thrombin inactivated by D-phenylalanine-L-prolyl-L-arginine chloromethyl ketone (PPACK-thrombin) binds to the highest affinity site for thrombin on the platelet surface, but thrombin modified by N alpha-tosyl-L-lysine chloromethylketone (TLCK-thrombin) does not. We now demonstrate that preincubation of platelets with PPACK-thrombin blocked platelet aggregation and cleavage of aggregin induced by 2 nM thrombin. In contrast, TLCK-thrombin neither blocked platelet aggregation nor the cleavage of aggregin. These results show that a) platelet aggregation and cleavage of aggregin by thrombin (2nm) involves the occupancy of high affinity alpha-thrombin receptors on the platelet surface, and b) stimulators of adenylate cyclase which increase cAMP, inhibit thrombin-induced platelet aggregation and cleavage of aggregin by mechanisms which include inhibiting the binding of thrombin to its receptors.  相似文献   

5.
Growth of Chinese hamster lung fibroblasts (CCL39) on thrombin as sole mitogen is dependent on phosphatidylinositol (PI) metabolism and activation of the Na+/H+ antiporter. By modifying a H+ suicide selection developed for the isolation of antiporter mutants in these cells, we enriched for and isolated CCL39 variants deficient in the thrombin mitogenic response (thrombin nongrowers). These mutants retain alternate mitogenic mechanisms and, hence, grow well on media containing serum. When challenged with thrombin, the mutants show decreased, increased, or unchanged levels of inositol phosphates produced as compared with wild type cells. One of the mutants (D1-6b) has decreased inositol phosphates production not only with thrombin but also with serotonin (5-hydroxytryptamine) and AlF4-, suggesting a defect distal to the thrombin receptors. Extracts of this mutant reveal marked decreased phospholipase C activity toward PI. From the different phenotypes of the thrombin nongrowers, it is clear that the selection is general and that mutants with various biochemical defects should lead to a better understanding of the PI cycle as well as of functions essential to mitogenesis.  相似文献   

6.
The mammalian tachykinin system consists of three distinct peptides, substance P, substance K, and neuromedin K, and possesses three corresponding receptors. In this investigation we examined intracellular signal transduction of the individual tachykinin receptors by transfection and stable expression of these receptor cDNAs in Chinese hamster ovary cells. The three receptors commonly showed a rapid and marked stimulation in both phosphatidylinositol (PI) hydrolysis and cyclic AMP formation in response to tachykinin interaction. Direct linkage of the three receptors to both phospholipase C and adenylate cyclase was evidenced by the finding that tachykinin, added together with GTP, activated these enzyme activities in membrane preparations derived from tachykinin receptor-expressing cells. The stimulation of cyclic AMP formation was less efficient than that of PI hydrolysis in receptor-expressing cells as well as their membrane preparations (about 1 order of magnitude difference in the effective peptide concentrations). However, the stimulatory responses of the PI hydrolysis and cyclic AMP formation in both receptor-expressing cells and their membrane preparations were induced in complete agreement with the tachykinin binding selectivity of each subtype of the receptors. This investigation demonstrated unequivocally that the tachykinin receptors have the potential to couple directly to both phospholipase C and adenylate cyclase and to stimulate PI hydrolysis and cyclic AMP formation.  相似文献   

7.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

9.
Previous studies in Chinese-hamster fibroblasts (CCL39 line) indicate that an important signalling pathway involved in thrombin's mitogenicity is the activation of a phosphoinositide-specific phospholipase C, mediated by a pertussis-toxin-sensitive GTP-binding protein (Gp). The present studies examine the effects of thrombin on the adenylate cyclase system and the interactions between the two signal transduction pathways. We report that thrombin exerts two opposite effects on cyclic AMP accumulation stimulated by cholera toxin, forskolin or prostaglandin E1. (1) Low thrombin concentrations (below 0.1 nM) decrease cyclic AMP formation. A similar inhibition is induced by A1F4-, and both thrombin- and A1F4- -induced inhibitions are abolished by pertussis toxin. (2) Increasing thrombin concentration from 0.1 to 10 nM results in a progressive suppression of adenylate cyclase inhibition and in a marked enhancement of cyclic AMP formation in pertussis-toxin-treated cells. A similar stimulation is induced by an active phorbol ester, and thrombin-induced potentiation of adenylate cyclase is suppressed by down-regulation of protein kinase C. Therefore, we conclude that (1) the inhibitory effect of thrombin on adenylate cyclase is the direct consequence of the activation of a pertussis-toxin-sensitive inhibitory GTP-binding protein (Gi) possibly identical with Gp, and (2) the potentiating effect of thrombin on cyclic AMP formation is due to stimulation of protein kinase C, as an indirect consequence of Gp activation. Our results suggest that the target of protein kinase C is an element of the adenylate cyclase-stimulatory GTP-binding protein (Gs) complex. At low thrombin concentrations, activation of phospholipase C is greatly attenuated by increased cyclic AMP, leading to predominance of the Gi-mediated inhibition.  相似文献   

10.
Thrombin both stimulates phosphoinositide hydrolysis and inhibits adenylyl cyclase in a variety of cell types. Whether the cloned human platelet thrombin receptor accounts for both of these signaling events is unknown. We report that thrombin receptor agonist peptide causes both phosphoinositide hydrolysis and inhibition of adenylyl cyclase in naturally thrombin-responsive CCL-39 cells. To exclude the possibility that the agonist peptide or thrombin itself may activate these pathways via distinct receptors and to circumvent a lack of suitable thrombin receptor-null cells, we utilized a designed "enterokinase receptor," a thrombin receptor with its thrombin cleavage recognition sequence LDPR replaced by DDDDK, the enterokinase cleavage recognition sequence. Transfection of enterokinase-unresponsive cells with this construct conferred both enterokinase-sensitive phosphoinositide hydrolysis and inhibition of adenylyl cyclase. The phosphoinositide hydrolysis response was largely insensitive to pertussis toxin, whereas the adenylyl cyclase response was completely blocked by pertussis toxin. These data show that the cloned thrombin receptor can effect both phosphoinositide hydrolysis and inhibition of adenylyl cyclase via at least two distinct effectors, most likely Gq-like and Gi-like G-proteins.  相似文献   

11.
We have isolated a hamster fibroblast cDNA clone that encodes a serotoninergic receptor whose deduced amino acid sequence displays 94% identity with the rat brain serotonin (5-HT) type 2 receptor. When expressed in Xenopus oocytes, the hamster receptor efficiently couples to the phosphoinositide second messenger system and leads to intracellular Ca2+ mobilization in response to 5-HT. To determine the pharmacological properties of this receptor, and to evaluate the role of phospholipase C (PLC) activation in growth modulation by 5-HT, we have expressed it in hamster fibroblasts. Transfected cells that express 5-HT receptors were selected using a novel method based on coexpression of the Na+/H+ antiporter gene as a selectable marker. After co-transfection of the 5-HT receptor and Na+/H+ antiporter cDNAs in fibroblasts lacking antiporter activity (variants of the CCL39 line), 50% of the clones resistant to an acute acid load express functional receptors. The pharmacological profile of the transfected receptor is consistent with it being of the 5-HT2 subtype, and the extent of 5-HT-stimulated PLC activation in independent clones correlates with their relative level of cRNA expression. In cells in where addition of 5-HT leads to strong activation of PLC, and inhibition of adenylate cyclase via endogenous 5-HT1b receptors, 5-HT alone has little effect on DNA synthesis stimulation. Thus we conclude that activation of the PLC signalling pathway in these cells is not sufficient to trigger G0/G1 to S phase transition. Strong activation of PLC via 5-HT2 receptors does however contribute to the synergy observed between 5-HT (Gi-coupled pathway) and fibroblast growth factor (tyrosine kinase-activated pathway) on DNA synthesis reinitiation in transfected cells.  相似文献   

12.
Prior treatment with pertussis toxin of G0-arrested hamster fibroblasts (CCL39) results in a dose-dependent inhibition of two early events of the mitogenic response elicited by alpha-thrombin: accumulation of inositol phosphates in Li+-treated cells, and activation of the Na+/H+ antiport, measured either by the amiloride-sensitive 22Na+ influx or by the increase in intracellular pH. At 10(-1) U/ml of alpha-thrombin, the maximal inhibition was approximately 50% for these two early cellular responses, but the pertussis toxin effect was more pronounced at lower thrombin concentrations. In contrast, pertussis toxin does not affect the Na+/H+ antiport activation induced by phorbol esters or EGF, the action of which is not mediated by the phosphoinositide-metabolizing pathway in CCL39 cells. Therefore, our data suggest the following. A GTP-binding regulatory protein is probably involved in signal transduction between thrombin receptors and the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. This regulation does not seem to be exerted via modulations of cyclic AMP levels. The thrombin-induced activation of Na+/H+ antiport is, at least in part, mediated by the protein kinase C, as a consequence of stimulation of phosphatidylinositol turnover.  相似文献   

13.
T K Vu  D T Hung  V I Wheaton  S R Coughlin 《Cell》1991,64(6):1057-1068
We isolated a cDNA encoding a functional human thrombin receptor by direct expression cloning in Xenopus oocytes. mRNA encoding this receptor was detected in human platelets and vascular endothelial cells. The deduced amino acid sequence revealed a new member of the seven transmembrane domain receptor family with a large amino-terminal extracellular extension containing a remarkable feature. A putative thrombin cleavage site (LDPR/S) resembling the activation cleavage site in the zymogen protein C (LDPR/I) was noted 41 amino acids carboxyl to the receptor's start methionine. A peptide mimicking the new amino terminus created by cleavage at R41 was a potent agonist for both thrombin receptor activation and platelet activation. "Uncleavable" mutant thrombin receptors failed to respond to thrombin but were responsive to the new amino-terminal peptide. These data reveal a novel signaling mechanism in which thrombin cleaves its receptor's amino-terminal extension to create a new receptor amino terminus that functions as a tethered ligand and activates the receptor.  相似文献   

14.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

15.
Endothelial cell activation by thrombin is a key event in wound healing, Inflammation, and hemostasis. To better define thrombin-endothelial cell interactions we synthesized several peptides of varying length corresponding to the initial 14 amino acid sequence of the cloned human platelet thrombin receptor after cleavage at an arginine41 site (R/SFLLRNPNDKYEPF). Thrombin receptor activating peptides (TRAPs) as short as 5 amino acids induced significant levels of PGl2 synthesis and expression of PDGF mRNA in human endothelium and produced dose-dependent cellular contraction and permeability of confluent human umbilical vein and bovine pulmonary artery endothelial monolayers. To explore whether TRAPs utilized similar signal transducing pathways as α-thrombin to accomplish endothelial cell activation, phospholipase C production of the Ca2+ secretagogue IP3 was measured and detected 10 seconds after either TRAP 7 or α-thrombin. Furthermore, TRAPs ranging from 5-14 residues induced significant dose-dependent incsreases in Fura-2 fluorescence indicative of Ca2+ 1 mobilization. These results indicate that thrombin-mediated proteolytic cleavage of the human and bovine thrombin receptor initiates stimulus/coupling respones such phospholipase C activation, Ca2+ mobilization, and protein kinase C activation. The functional consequence of this cellular activation via the cleaved receptor is enhanced cellular contraction, barrier dysfunction, PGI2 synthesis, and expression of PDGF mRNA. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Several analogs of caffeine have been investigated as antagonists at A2 adenosine receptors stimulatory to adenylate cyclase in membranes from rat pheochromocytoma PC12 cells and human platelets and at A1 adenosine receptors inhibitory to adenylate cyclase from rat fat cells. Among these analogs, 1-propargyl-3,7-dimethylxanthine was about 4- to 7-fold and 7-propyl-1,3-dimethylxanthine about 3- to 4-fold more potent than caffeine at A2 receptors of PC12 cells and platelets. At A1 receptors of fat cells, both compounds were about 2-fold less potent than caffeine. These caffeine analogs have an A1/A2 selectivity ratio of about 10-20 and are the first selective A2 receptor antagonists yet reported. The results may provide the basis for the further development of highly potent and highly selective A2 adenosine receptor antagonists.  相似文献   

17.
18.
Thrombin activates protease-activated receptors (PARs) by specific cleavage of their amino-terminal exodomains to unmask a tethered ligand that binds intramolecularly to the body of the receptor to effect transmembrane signaling. Peptides that mimic such ligands are valuable as agonists for probing PAR function, but the tethered ligand peptide for PAR4, GYPGKF, lacks potency and is of limited utility. In a structure-activity analysis of PAR4 peptides, AYPGKF was approximately 10-fold more potent than GYPGKF and, unlike GYPGKF, elicited PAR4-mediated responses comparable in magnitude to those elicited by thrombin. AYPGKF was relatively specific for PAR4 in part due to the tyrosine at position 2; substitution of phenylalanine or p-fluorophenylalanine at this position produced peptides that activated both PAR1 and PAR4. Because human platelets express both PAR1 and PAR4, it might be desirable to inhibit both receptors. Identifying a single agonist for both receptors raises the possibility that a single antagonist for both receptors might be developed. The AYPGKF peptide is a useful new tool for probing PAR4 function. For example, AYPGKF activated and desensitized PAR4 in platelets and, like thrombin, triggered phosphoinositide hydrolysis but not inhibition of adenylyl cyclase in PAR4-expressing cells. The latter shows that, unlike PAR1, PAR4 couples to G(q) and not G(i).  相似文献   

19.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

20.
A thrombin receptor has recently been cloned and the sequence deduced. The sequence reveals a thrombin cleavage site that accounts for receptor activation. The receptor also has an acidic region with some similarities to the carboxyl-terminal region of the leech thrombin inhibitor, hirudin. Synthetic peptides corresponding to the receptor cleavage site (residues 38-45), the hirudin-like domain (residues 52-69), and the covalently associated domains (residues 38-64) were evaluated for their ability to bind to thrombin. Peptides 38-45 and 38-64 were competitive inhibitors of thrombin's chromogenic substrate activity (Ki = 0.96 mM and 0.6 microM, respectively. Residues 52-69 altered the chromogenic substrate specificity, resulting in accelerated cleavage of some substrates and inhibited cleavage of others. The same peptide binds to thrombin and alters the fluorescence emission intensity of 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-thrombin in which the dansyl is attached directly to the active site serine (Kd = 32 +/- 7 microM). Residues 52-69 displace the carboxyl-terminal peptide of hirudin, indicating that they share a common binding site in the anion exosite of thrombin. These data suggest that the thrombin receptor has high affinity for thrombin due to the presence of the hirudin-like domain and that this domain alters the specificity of thrombin. This change in specificity may account for the ability of the receptor to serve as an excellent thrombin substrate despite the presence of an Asp residue in the P3 site, which is normally inhibitory to thrombin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号