首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive staining method for protein blots on nitrocellulose membranes is described and compared with commonly used dye staining methods. It uses colloidal metal sols (gold or silver) stabilized with Tween 20 and adjusted to pH 3. It is based on the selective high-affinity binding of colloidal metal particles to the proteins and produces a red-purplish color (gold) or dark grey (silver). The sensitivity of this new staining method is in the same range as silver staining of polyacrylamide gels and matches the sensitivity of overlay assays. It will therefore be a useful tool for correlating the position of bands or spots of proteins detected with overlay assays with the complete electropherogram in a duplicate protein blot.  相似文献   

2.
We have developed a rapid and precise electron microscope technique for the quantitation of gold particles in suspension using latex microspheres as a reference (EM latex technique). This technique allowed us to determine the specific absorption of colloidal gold at its absorption maximum (520 nm) and the average number of ligands ([125I]IgG) bound to one gold particle. On the basis of these values important binding characteristics of protein-gold complexes to cell surfaces were analyzed in a model system consisting of Staphylococcus aureus with protein A on the cell wall as a specific binding site for IgG-Au. Our observations showed that the number of binding sites represented by one IgG-gold complex depended primarily on the particle size, with one 20-nm IgG-Au corresponding to 15 and one 6-nm IgG-Au to 2.5 binding sites. Hence, the efficiency of binding of IgG-Au complexes increased with decreasing gold particle size. Saturation of binding sites, however, was not achieved. The technique also made possible the determination of the affinity between IgG-Au complexes and the cell surface; this affinity can either be regarded as a characteristic of the ligand IgG or of the gold particle. We observed that the affinity of IgG decreased with the size of the gold particles to which IgG was bound, whereas the affinity of the entire gold particle increased with particle size. The EM latex technique for quantitation of gold particles extends the general use of protein-gold complexes to the quantitative characterization of their interaction with cell surface constituents.  相似文献   

3.
Protein L. A novel bacterial cell wall protein with affinity for Ig L chains   总被引:12,自引:0,他引:12  
A novel Ig-binding protein has been isolated from the surface of bacteria belonging to the anaerobic species Peptococcus magnus. To solubilize the protein, peptococci were treated with different proteolytic enzymes (papain, pepsin, and trypsin) or with mutanolysin, a bacteriolytic agent known to digest the cell walls of streptococci. Papain, trypsin, and mutanolysin all solubilized peptides showing affinity for radiolabeled human IgG in Western blot analysis. Compared with papain and trypsin, mutanolysin liberated a more homogeneous material, which also had a higher m.w. This mutanolysin-solubilized protein (Mr 95 kDa) was obtained highly purified by a single isolation step on IgG-Sepharose, and the molecule was found to exhibit unique Ig-binding properties. Thus, in dot blots and in Western blots, human IgG, F(ab')2 and Fab fragments of IgG, and human kappa and lambda L chains all showed affinity for the protein. Moreover, the molecule also bound human IgM and IgA, whereas no binding was recorded for IgG-Fc fragments or IgG H chains. Finally, the protein bound to human polyclonal Ig L chains immobilized on polyacrylamide beads. These different data demonstrate that the isolated peptococcal protein binds Ig through L chain interaction. The name protein L is therefore suggested for this novel Ig-binding bacterial cell wall protein.  相似文献   

4.
Human C-reactive protein (CRP) is known to activate mouse macrophages (M phi) to a tumoricidal state and to serve as an opsonin for M phi. Therefore, cell surface receptors for CRP on mouse M phi were characterized and their relationship to the IgG FcR determined. The specific binding of 125I-CRP to resident or elicited mouse M phi was saturable, reversible, and involved both a high and a low affinity receptor population. Binding of CRP to the mouse M phi cell lines PU5 1.8 and J774 was nearly identical to that observed with peritoneal M phi. The high affinity receptor population had a calculated K of 10 nM and a receptor density of approximately 10(5) sites per cell. Mouse Ig of the IgG2a, IgG2b, or IgG1 isotypes inhibited binding of 125I-CRP to PU5 1.8 cells at concentrations five-fold greater than that of the homologous ligand. In the converse experiment, unlabeled CRP failed to inhibit specific binding of 125I-labeled IgG2a, IgG2b or IgG1. Isolation of CRP binding proteins from surface iodinated PU5 1.8 cells by ligand-affinity chromatography or chemical cross-linking yielded a major protein band of 57 to 60 kDa which appeared to be distinct from the IgG1/IgG2b FcR (FcR-II) membrane proteins. Removal of radiolabeled IgG2b/IgG1 binding membrane proteins by affinity chromatography did not remove CRP-binding proteins. The rat mAb 2.4G2 which inhibits binding of radiolabeled mouse IgG2b, did not inhibit the binding of CRP. A rat polyclonal antiserum to CRP-binding membrane proteins of PU5 1.8 cells inhibited 125I-CRP binding, but not 125IgG2b binding. The rat polyclonal antibody reacted with two 57 to 60 kDa membrane proteins from PU5 1.8 cells that appear to be of a similar size on Western blots. The 125I-CRP was internalized via endosomes and intact CRP subunits could be detected intracellularly. The findings suggest that binding of CRP occurs through a receptor that is distinct from the IgG FcRs, but that CRP-R activity may be influenced by an association with an IgG FcR.  相似文献   

5.
A novel surface protein of the bacterial species Moraxella catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen and isolated by ion exchange chromatography and gel filtration. The apparent molecular mass of monomeric MID was estimated to approximately 200 kDa by SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 residues. The sequence of MID has no similarity to other Ig-binding proteins and differs from all previously described outer membrane proteins of M. catarrhalis. MID was found to exhibit unique Ig-binding properties. Thus, in ELISA, dot blots, and Western blots, MID bound two purified IgD myeloma proteins, four IgD myeloma sera, and finally one IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID also bound to the surface-expressed B cell receptor IgD, but not to other membrane molecules on human PBLs. This novel Ig-binding reagent promises to be of theoretical and practical interest in immunological research.  相似文献   

6.
An immunochemical staining technique for the spore coat proteins of Bacillus megaterium ATCC 12872 was developed using colloidal gold as a second antibody. For reducing the non-specific immunogold binding and increasing the specific binding, the affinity-purified IgG was used as a first antibody. In sporulating cells at t10, gold particles were found not only in the spore coat but also in the mother cell cytoplasm, suggesting that some coat proteins were synthesized in the cytoplasm. Use of the specific affinity-purified antibody to 48K-protein demonstrated that this protein was one of the components of the outer coat.  相似文献   

7.
Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules.  相似文献   

8.
Methods to detect "native" proteins immobilized on nitrocellulose membranes in spot tests or on blots prepared from polyacrylamide slab gels after electrophoretic separation are described. Gold sols were found to be useful as general stains for proteins: They are polychromatic, yield an indelible record, and are complementary to india ink as protein stains because these two stains have different sensitivities for a number of proteins tested. For detection of wheat germ lectin (WGL)-binding glycoproteins, avidin-peroxidase was an effective enzyme probe, because the glycoportion of the avidin moiety possesses binding affinity to WGL. Glycocomponents in human parotid saliva were detected with this probe and with the following biotin-conjugated lectins as intermediary probes: soybean lectin, Bandeiraea simplicifolia lectin, Lotus tetragonolobus lectin, and kidney bean lectin. Autoclaving blots prior to probing eliminated endogenous peroxidase activity. Concanavalin A and WGL were separated by isoelectric focusing and detected on blots with horseradish peroxidase and avidin-peroxidase, respectively. The versatility of the biotin/avidin system was used to detect other lectins on similar blots using biotin-conjugated glycoproteins as intermediary probes: Helix pomatia lectin and B. simplicifolia lectin were detected with biotinyl neoglycoproteins, and kidney bean lectin with biotin-conjugated components of parotid saliva.  相似文献   

9.
Labelling of colloidal gold with protein A. A quantitative study   总被引:6,自引:0,他引:6  
Colloidal gold complexes with protein A are extensively used in immunocytochemistry as secondary reagents for the localization of antigens. However detailed information on the process and extent of adsorption of protein A onto gold particles, the optimal condition of preparation and the stability of such complexes are lacking. The adsorption isotherm of 125I-protein A onto gold particles (11.2 nm in diameter) was studied quantitatively with gold sols buffered at pH 4-7. At low coverage of the particles, the isotherm was independent of pH. However in the presence of a large excess of protein A, the highest coverage was obtained with a gold sol buffered at pH 5.1, the isoelectric point of the protein. The association constant was decreased at high coverage of the particles. Maximum binding of the complex to immobilized IgG occurred with particles labelled with at least 9 molecules of protein A. The complex was stable under storage with up to 12 molecules adsorbed per particle. At high coverage (26 molecules per particle), a progressive loss of protein A was observed. The optimum condition for preparing the complex are reported.  相似文献   

10.
Human erythrocytes incubated with an iron catalyst ADP-chelated Fe3+ undergo oxidative damage of the membrane including lipid peroxidation, protein oxidation, and protein aggregation, and become susceptible to recognition by human macrophages. In order to clarify the membrane components of macrophages responsible for the recogrution of the oxidized erythrocytes, binding of the oxidized cells to dot and Western blots of solubilized membrane of macrophages was investigated. The oxidized erythrocytes but not unoxidized cells bound to the dot blots. The binding was effectively inhibited by saccharide chains of band 3, a major glycoprotein of human erythrocytes, and lowered when the saccharide chains of band 3 were removed from the cell surface by pretreatment of the cells with endo-P-galactosidase which specifically cleaves the polylactosaminyl saccharide chains of band 3. The oxidized erythrocytes bound to the membrane proteins of macrophages with molecular mass of about 50, 80, and 120 kDa on Western blots depending on the saccharide chains of band 3 on their surface. The results suggest that the oxidatively damaged erythrocytes are specifically recognized by these proteins of macrophage membrane having saccharide binding ability.  相似文献   

11.
12.
The immunogold method is widely used to localize, identify, and distinguish cellular antigens. There are, however, some pitfalls that can lead to nonspecific binding, particularly in cytoskeletal studies with gold probes prepared from small gold particles. We present a list of suggestions for minimizing nonspecific binding, with particular attention to two problems identified in this study. First, we find that the method used to prepare the colloidal gold particles affects the degree of nonspecific binding. Second, the standard BSA-stabilized small gold probes evidently possess exposed regions that bind to the proteins of cytoskeletal preparations. This was investigated in whole-mount cytoskeletal preparations of cultured cells by use of light microscopy, transmission electron microscopy, and photoelectron microscopy of silver-enhanced specimens. Gold probes were made from approximately 5-nm particles generated by reduction of HAuCl4 with three different reducing agents: white phosphorus, sodium borohydride, and citrate-tannic acid. All three preparations stabilized in the conventional way showed significant levels of nonspecific binding, which was highest with citrate-tannic acid. This problem was largely solved with all three types of probes by including fish gelatin in the probe buffer, by substituting fish gelatin for the BSA stabilizer used to prepare the probes, or by pre-adsorption methods. Application of these techniques resulted in clear immunogold labeling patterns with minimal nonspecific background.  相似文献   

13.
A new method of preparing gold probes for multiple-labeling cytochemistry   总被引:153,自引:0,他引:153  
A new method is described for preparing colloidal gold particles in any size between approximately 3 and 17 nm for electron microscopy. The gold particles are homogeneous in size (homodisperse). When bound to various proteins (e.g. IgG and protein A), the complexes were stable for long periods and suitable for affinity cytochemistry. We demonstrated the usefulness of the new gold probes bound to protein A for multiple labeling in a current immunocytochemical study on receptor mediated transport of IgA in human duodenal crypt cells. Other gold-protein complexes were useful for studying macromolecular arrangements at high resolution.  相似文献   

14.
Addition of six histidines to recombinant proteins has proved useful in their purification by nickel-affinity columns. This technology was adapted by synthesizing the chelator for nickel (nitrilotriacetic acid, NTA) onto the surface of gold clusters. These Ni-NTA-gold clusters were shown to specifically target the 6His region of tagged proteins. Results were verified by column chromatography, dot and overlay blots, UV-Vis spectroscopy, and scanning transmission electron microscopy. A 6His-tagged adenovirus "knob" protein was also shown to maintain receptor binding activity after gold labeling. Two types of gold clusters were used: 1.4-nm Nanogold and a new 1.8-nm "PeptideGold" coated with an NTA-dipeptide-thiol. These novel labels should be useful in site-specific high-resolution EM labeling, as well as in metallographic development, detection in the light microscope, or direct visualization.  相似文献   

15.
High-voltage (15-30 kV) field emission scanning electron microscopy (FESEM) was used to evaluate the effects of gold particle size and protein concentration on the formation of protein-gold complexes. Six colloidal gold sols were prepared, ranging in diameter from 7.6 to 39.8 nm. The minimal protecting amounts (m.p.a.) of protein A and goat anti-rabbit antibody (GAR) were experimentally determined. Gold particles were conjugated at the m.p.a., one half the m.p.a., and ten times the m.p.a. for both proteins, and protein-gold complexes prepared for FESEM. The smallest colloidal gold particles required the most protein per milliliter of gold suspension for stabilization. Transmission electron microscopy was found to be the preferred method for accurate sizing of gold particles, whereas FESEM of protein-gold complexes permitted visualization of a protein halo around a spherical gold core. Protein halo width varied significantly with changes in gold particle size. Measurements of protein halos indicated that conjugation with the m.p.a. of protein A resulted in the thickest protein layers for all gold sizes. GAR conjugation with the m.p.a. again produced the thickest protein layers. However, GAR halos were significantly smaller than those obtained with protein A conjugation. The proteins used showed similar adsorption patterns for the larger gold particles. For smaller gold particles, proteins may act differently, and these complexes should be further characterized by low-voltage FESEM.  相似文献   

16.
Immunolabeling efficiency of protein A-gold complexes   总被引:4,自引:0,他引:4  
A systematic study of the adsorption of protein A on colloidal gold particles varying in size from 5-16 nm was performed at different protein concentrations. The number of protein A molecules bound per colloidal particle was evaluated and the Scatchard analysis of the adsorption parameters was applied for each size of the colloid. The binding of protein A to the colloidal gold surface exhibited the same affinity pattern for all of the particle sizes. At low concentrations of stabilizing protein, adsorption took place with high affinity (Kd 1.96-3.3 nM) and the maximum number of protein A molecules attached with this affinity correlated well with the surface of the particle. At higher concentrations of protein A, adsorption exhibited a significantly lower affinity (Kd 530-800 nM), and no saturation was recorded. Competition by albumin did not reveal a preferential removal of the "low-affinity" bound protein A molecules, contradicting the model of successive shells of stabilizing protein around the colloidal particle. The immunolabeling efficiency of conjugates having the same size of gold nucleus but carrying different numbers of protein A molecules was comparatively investigated by quantitative post-embedding immunocytochemistry. Protein A-gold formed with 5-10-nm colloids gave the highest intensity of labeling when carrying the maximum number of protein A molecules that could be adsorbed with high affinity. Overloading as well as underloading these complexes resulted in a significant decrease of their immunoreactivity. The most efficient conjugates were obtained when stabilization was performed with 6 micrograms protein A/ml gold sol of 5 and 10 nm particle diameter, and 15 micrograms protein/ml of 15-nm colloid.  相似文献   

17.
Soybean triacylglycerol particles stabilized with soybean phosphatidylinositol (PI), bovine brain phosphatidylserine (PS), egg yolk phosphatidylcholine (PC) or mixtures of these acidic and neutral phospholipids were prepared with diameters ranging from 250 to 520 nm. Binding of apoproteins to the lipid particles was studied using the strategy of Connelly and Kuksis. The recoveries of the injected particles, which had undergone minimal changes in lipid composition, ranged rom 57% for the PC-stabilized emulsions to 21% for the emulsions stabilized with PS and 8% for the emulsions stabilized with PI. The apoprotein (apo) composition of the recovered particles showed characteristic qualitative and quantitative differences. The particles stabilized with PI and PS or PI-phosphatidylethanolamine contained an unknown protein of molecular weight 117,000 (43-48%) and albumin (9-13%) as major components. The apoC-II, apoC-III, apoA-I, apoE, and apoA-IV were present as minor components in ratios that were the reverse of those seen for the PC-stabilized particles, which contained these proteins as major components. The relative strength of the binding of the proteins, which was determined by washing the particles with saline under standard conditions, also showed variations among the different particles and different apoproteins. The lipid particles stabilized with the acidic phospholipids had less total apoprotein and held it less tightly than the particles stabilized with PC. It is concluded that the binding of apoproteins by lipid particles stabilized with acidic phospholipids involves hydrophobic and ionic interactions, both of which may be physiologically important.  相似文献   

18.
A model of protein-colloidal gold interactions   总被引:11,自引:0,他引:11  
We prepared homogeneous populations of colloidal gold particles of various sizes. These were analyzed for size distribution and number of particles per unit volume. On exposure to increasing concentrations of insulin, myoglobin, protein A, peroxidase, serum albumin, galactosylated serum albumin, lactoferrin, transferrin, catalase, low-density lipoprotein, ferritin, and polymeric IgA, protein binding was a saturable process. Using serum albumin, we verified that a reversible equilibrium was reached within 15 minutes. Scatchard analysis of the interactions between all of these proteins and the gold particles resulted in a single component, linear relation. For a given particle size, the number of binding sites for various proteins was inversely proportional to their molecular weight. Conversely, when the size of particles was varied, the number of binding sites was directly proportional to the average area of each gold particle. All results are compatible with a monomolecular shell of protein surrounding the particle at saturation, the binding capacity being inversely proportional to the projection area of the protein. We present direct morphological evidence for this model. The affinity of the various proteins for the colloid also increased with molecular weight, and was not related to the protein isoelectric point. For globular proteins, the monomolecular shell model makes possible prediction of the number of molecules that will saturate a gold particle, if the average diameter of the gold particles and the molecular weight of the protein are known.  相似文献   

19.
A simple, sensitive method to visualize the binding and internalization of protein ligands by cells in culture is described. A biotinylated toxin was used as ligand, and succinoylated avidin adsorbed onto 5.2 nm gold sols was the electron-dense marker. This method affords direct localization of proteins that are on the cell surface or intracellular without need for techniques that alter membrane integrity.  相似文献   

20.
Li S  Xiong R  Wang X  Zhou Y 《PloS one》2011,6(10):e26585
Rice stripe virus (RSV) is the type member of the genus Tenuivirus, which relies on the small brown planthopper (Laodelphax striatellus Fallén) for its transmission in a persistent, circulative-propagative manner. To be transmitted, virus must cross the midgut and salivary glands epithelial barriers in a transcytosis mechanism where vector receptors interact with virions, and as propagative virus, RSV need utilize host components to complete viral propagation in vector cells. At present, these mechanisms remain unknown. In this paper, we screened L. striatellus proteins, separated by two-dimensional electrophoresis (2-DE), as potential RSV binding molecules using a virus overlay assay of protein blots. The results, five L. striatellus proteins that bound to purified RSV particles in vitro were resolved and identified using mass spectrometry. The virus-binding capacities of five proteins were further elucidated in yeast two-hybrid screen (YTHS) and virus-binding experiments of expressed proteins. Among five proteins, the receptor for activated protein kinase C (RACK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH3) did not interact with RSV nucleocapsid protein (NCP) in YTHS and in far-Western blot, and three ribosomal proteins (RPL5, RPL7a and RPL8) had specific interactions with RSV. In dot immunobinding assay (DIBA), all five proteins were able to bind to RSV particles. The five proteins' potential contributions to the interactions between RSV and L. striatellus were discussed. We proposed that RACK and GAPDH3 might be involved in the epithelial transcytosis of virus particles, and three ribosomal proteins probably played potential crucial roles in the infection and propagation of RSV in vector cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号