首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely to have consequent effects on parasitoids specialising on such pests. A better understanding of the interaction between transgenic plants, pests and parasitoids is important to limit disruption of biological control and to provide background knowledge essential for implementing measures for the conservation of parasitoid populations. It is also essential for investigations into the potential role of parasitoids in delaying the build-up of Bt-resistant pest populations. The diamondback moth (Plutella xylostella), a major pest of brassica crops, is normally highly susceptible to a range of Bt toxins. However, extensive use of microbial Bt sprays has led to the selection of resistance to Bt toxins in P. xylostella. Cotesia plutellae is an important endoparasitoid of P. xylostella larvae. Although unable to survive in Bt-susceptible P. xylostella larvae on highly resistant Bt oilseed rape plants due to premature host mortality, C. plutellae is able to complete its larval development in Bt-resistant P. xylostella larvae. Experiments of parasitoid flight and foraging behaviour presented in this paper showed that adult C. plutellae females do not distinguish between Bt and wildtype oilseed rape plants, and are more attracted to Bt plants damaged by Bt-resistant hosts than by susceptible hosts. This stronger attraction to Bt plants damaged by resistant hosts was due to more extensive feeding damage. Population scale experiments with mixtures of Bt and wildtype plants demonstrated that the parasitoid is as effective in controlling Bt-resistant P. xylostella larvae on Bt plants as on wildtype plants. In these experiments equal or higher numbers of parasitoid adults emerged per transgenic as per wildtype plant. The implications for integrated pest management and the evolution of resistance to Bt in P. xylostella are discussed.  相似文献   

2.
Five transgenic rice lines, each containing an insecticidal toxin gene from Bacillus thuringiensis (Bt) under control of a different promoter, were tested for effects on two non-target insects: the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and its predator Cyrtorhinus lividipennis (Hemiptera: Miridae). Bt toxin was detected by ELISA in the honeydew of N. lugens that fed on rice lines with the CaMV 35S and actin promoters. Nilaparvata lugens produced greater volumes of acidic honeydew (derived from xylem feeding) on all five Bt rice lines than on non-transgenic control lines. The amount of honeydew derived from phloem feeding did not differ between Bt and control lines. There were no differences between N. lugens reared on Bt and control lines in any of the five fitness parameters measured (survival to the adult stage, male and female weight, and male and female developmental time). There were no differences between C. lividipennis reared on N. lugens nymphs from Bt and control lines, in any of the three fitness parameters examined (survival to the adult stage and male and female developmental time). Our results indicate that N. lugens and its natural enemies will be exposed to Bt toxins from rice lines transformed with some Bt gene constructs, but that this exposure might not affect N. lugens and C. lividipennis fitness.  相似文献   

3.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), is a dominant maize borer pest and a major target of Bacillus thuringiensis (Bt)‐maize in Louisiana and the Gulf Coast area of Texas (USA). Growth and development of D. saccharalis on non‐toxic diet, diet treated with three low concentrations (0.01, 0.05, and 0.1 μg g?1) of Cry1Ab toxin, and on non‐Bt maize plants were compared for five insect genotypes: a Bt‐susceptible strain (BT‐SS), a Cry1Ab‐resistant strain (BT‐RR), a back‐crossed and re‐selected resistant strain (BT‐R’R’), and two F1 progeny of the BT‐SS and BT‐R’R’ strains. Fitness of the five genotypes was examined by infesting neonates on diet with/without Cry1Ab toxin in the laboratory and on intact non‐Bt maize plants in the greenhouse. Biological parameters measured were neonate‐to‐pupa development time and pupation rate, larval survival, larval and pupal weight, and sex ratio. Larvae of BT‐SS and BT‐R’R’ on non‐toxic diet and non‐Bt maize plants grew normally and there were no significant differences between the two strains in all measured parameters, suggesting a lack‐of‐fitness cost of the Cry1Ab resistance in D. saccharalis. Except for the development time on non‐Bt diet, all other parameters on both non‐Bt diet and non‐Bt maize plants were similar among the five genotypes. Larval development of BT‐SS was significantly affected on diet treated with Cry1Ab toxin at 0.05 and 0.1 μg g?1, whereas the effect to BT‐RR and BT‐R’R’ was not significant. Pupal weight and sex ratio reared on Cry1Ab‐diet were similar and there were no significant differences among the five genotypes. Neonate‐to‐pupation rate decreased as Cry1Ab concentrations increased but the decrease was more significant for BT‐SS than for the other four genotypes. The lack‐of‐fitness costs of Bt resistance in D. saccharalis imply a greater challenge in managing Bt resistance for this maize borer species.  相似文献   

4.
Abstract:  Life history parameters in two generations of endoparasitoid Campoletis chlorideae (Uchida) were examined using Bacillus thuringiensis (Bt)-resistant Helicoverpa armigera (Hübner) larvae feeding on B. thuringiensis toxin Cry1Ac. In the laboratory, Bt toxin was fed to Bt-resistant host larvae continuously in case of Bt treatment and only before or after the host larvae were parasitized in Bt–P and P–Bt treatments, respectively. C. chlorideae pupae developed faster in Bt treatment than non-Bt treatment. The shortened pupal stage duration was mainly because of the feeding of host larvae on Bt-diet before being parasitized. Body length of adult male C. chlorideae developed inside Bt-treated Bt-resistant (Bt–Bt) H. armigera larvae significantly decreased, especially in host larvae feeding on Bt-diet after being parasitized. However, survival, pupal mortality and adult longevity of C. chlorideae were almost unaffected in Bt-resistant H. armigera larvae feeding on Bt-toxin. Furthermore, Bt-treated host larvae had the same effect on the F1 progeny of C. chlorideae as the previous generation, and there was no significant difference between generations. This experiment suggests that there is very limited effect on the life history parameters in two generations of C. chlorideae parasitizing Bt–Bt H. armigera larvae. But both generations of C. chlorideae are affected when Bt-resistant H. armigera larvae fed on Bt toxin for different durations.  相似文献   

5.
1 The dispersal of susceptible insects between refuges and Bacillus thuringiensis (Bt) treated fields is the key to resistance management of Bt crops. Here we describe the opposite situation; the movement of Bt resistant Trichoplusia ni moths from over‐wintered, greenhouse populations in British Columbia (BC) exposed to high Bt use to neighbouring greenhouses where Bt sprays have not been used. 2 The spread of Bt resistance to non‐selected populations of T. ni, and the resulting increase in resistance, indicates a surprising level of dispersal of resistant moths among greenhouses even in the face of fitness costs. 3 Field populations of T. ni in BC are seasonal migrants from regions of California where Bt cotton is grown. In 2006, field populations surveyed along the migration path from California through Oregon were highly susceptible to Bt insecticides and, thus, showed no indication of selection for resistance among these source populations. 4 The arrival of the immigrant moths provides a potential source of susceptible individuals to dilute the levels of resistance in greenhouse populations in BC later in the summer, but this has not occurred. Thus, field populations in BC do not appear to serve as refuges to combat Bt resistance in greenhouse populations.  相似文献   

6.
Recessive resistance to Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., in laboratory-selected strains of pink bollworm, Pectinophora gossypiella (Saunders), is associated with three resistance alleles (r1, r2, and r3) of a cadherin gene. Previous experiments based on measurement of fitness components in Bt-resistant and Bt-susceptible strains revealed that fitness costs and incomplete resistance are associated with resistance. Here, we used two hybrid strains of pink bollworm, each containing a mixture of susceptible and resistant individuals, and polymerase chain reaction (PCR) amplifications to test the association between cadherin genotype and fitness components for individuals sharing a common genetic background. All survivors on Bt cotton had two r alleles, confirming that recessive cadherin alleles are tightly linked with resistance to Bt cotton. On non-Bt cotton, significantly greater developmental time for rr than ss larvae indicated a recessive fitness cost, but costs did not affect survival or pupal weight. Incomplete resistance was manifested as longer developmental time, lower survival, and smaller pupal weight in rr individuals developing on Bt cotton compared with non-Bt cotton. As in previous experiments, no significant variation in performance on Bt cotton was detected among rr genotypes. However, a meta-analysis of data from seven experiments revealed that survival on Bt cotton relative to non-Bt cotton was lower in r2r3 and higher in r1r2 compared with the other rr genotypes. Assessment of fitness components associated with cadherin genotypes in hybrid strains of pink bollworm confirms that recessive resistance to Bt cotton is associated with recessive fitness costs and incomplete resistance.  相似文献   

7.
Effects of exposure to maize pollen of event Bt176 (cultivar “Navares”) on the larvae of the European common swallowtail (Papilio machaon L.) were studied in the laboratory. First instar larvae were exposed to different pollen densities applied to leaf disks of Pastinaca sativa L. for 48 h. Pollen densities applied in this study were in the range recorded from the field. Larvae which were exposed to higher Bt maize pollen densities consumed more pollen and had a lower survival rate. The LD50 with regard to larvae surviving to adulthood was 13.72 pollen grains consumed by first-instar larva. Uptake of Bt maize pollen led to a reduced plant consumption, to a lower body weight, and to a longer development time of larvae. Effects on pupal weight and duration of the pupal period were present but less pronounced and smaller than effects on larvae. Larvae having consumed Bt-maize pollen as first instars had a lower body weight as adult females and smaller forewings as adult males. We conclude that possible effects of Bt maize on European butterflies and moths must be evaluated more rigorously before Bt maize should be cultivated over large areas.  相似文献   

8.
Transgenic cotton producing a Bacillus thuringiensis (Bt) toxin is widely used for controlling the pink bollworm, Perctinophora gossypiella (Saunders). We compared performance of pink bollworm strains resistant to Bt cotton with performance of their susceptible counterparts on non-Bt cotton. We found fitness costs that reduced survival on non-Bt cotton by an average of 51.5% in two resistant strains relative to the susceptible strains. The survival cost was recessive in one set of crosses between a resistant strain and the susceptible strain from which it was derived. However, crosses involving an unrelated resistant and susceptible strain indicated that the survival cost could be dominant. Development time on non-Bt cotton did not differ between the two related resistant and susceptible strains. A slight recessive cost affecting development time was suggested by comparison of the unrelated resistant and susceptible strains. Maternal effects transmitted by parents that had eaten Bt-treated artificial diet as larvae had negative effects on embryogenesis, adult fertility, or both, and reduced the ability of neonates to enter cotton bolls. These results provide further evidence that fitness costs associated with the evolution of resistance to Bt cotton are substantial in the pink bollworm.  相似文献   

9.
A range of crops have been transformed with delta-endotoxin genes from Bacillus thuringiensis (Bt) to produce transgenic plants with high levels of resistance to lepidopteran pests. Parasitoids are important natural enemies of lepidopteran larvae and the effects of Bt plants on these non-target insects have to be investigated to avoid unnecessary disruption of biological control. This study investigated the effects of Cry1Ac-expressing transgenic oilseed rape (Brassica napus) on the solitary braconid endoparasitoid Cotesia plutellae in small-scale laboratory experiments. C. plutellae is an important natural enemy of the diamondback moth (Plutella xylostella), the most important pest of brassica crops world-wide. Bt oilseed rape caused 100% mortality of a Bt-susceptible P. xylostella strain but no mortality of the Bt-resistant P. xylostella strain NO-QA. C. plutellae eggs laid in Bt-susceptible hosts feeding on Bt leaves hatched but premature host mortality did not allow C. plutellae larvae to complete their development. In contrast, C. plutellae developed to maturity in Bt-resistant hosts fed on Bt oilseed rape leaves and there was no effect of Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence and percentage adult emergence from cocoons. Weights of female progeny after development in Bt-resistant hosts did not differ between plant types but male progeny was significantly heavier on wildtype plants in one of two experiments. The proportion of female progeny was significantly higher on Bt plants in the first experiment with Bt-resistant hosts but this effect was not observed again when the experiment was repeated.  相似文献   

10.
Bacillus thuringiensis (Bt) isolates were present on the phylloplanes of chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), pea (Pisum sativum) and mung bean (Vigna radiata). Bt index (ratio of the number of Bt colonies to the total number of spore-forming colonies per g of leaves) differed significantly among these plants, with the highest (0.20) in the chickpea phylloplane, followed by pigeon pea (0.17). Bt population of the chickpea phylloplane varied with plant age, being maximal in 45-day-old plants. Diversity was observed among Bt isolates for growth (up to 10-fold difference), antibiotic resistance, PCR product profile and toxicity to Helicoverpa armigera. Two isolates with high activity towards H. armigera were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract:  Propylaea japonica is an important predatory insect of common cotton pests. To assess the ecological effects of transgenic Bt cotton, expressing Cry1Ac toxin, on this predator, we examined the life history parameters of P. japonica for two generations by feeding them with Bt-resistant Helicoverpa armigera . After ingesting Bt-treated Bt-resistant H. armigera larvae in the third and fourth instar, the body mass and body length of adult P. japonica decreased, a combined effect of poor prey quality and Cry1Ac Bt-toxin may account for these effects. However, larval survivorship and development in these two instars, pupal mortality, fecundity and adult longevity of P. japonica were not affected in both the generations. These results suggest that ingesting Bt-toxin Cry1Ac-treated pests in advanced larval stage might have no significant effect on the fitness of predator P. japonica .  相似文献   

12.
Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) can control some major insect pests and reduce reliance on sprayed insecticides. However, large scale adoption of this technology has raised concerns about potential negative effects, including evolution of pest resistance to Bt toxins, transgene flow from Bt crops to other plants, and harm to non-target beneficial organisms. Furthermore, concern has also been expressed over the effects this technology may have on biodiversity in general. Ecologically relevant risk assessment is therefore required (Risk = Hazard × Exposure). Transgenic plants that produce Bt toxins to kill insect pests could harm beneficial predators. This might occur directly by transmission of toxin via prey, or indirectly by toxin-induced reduction in prey quality (Hazard). To test these hypotheses, we determined the effects of Bt-producing canola on a predatory ground beetle (Pterostichus madidus) fed larvae of diamondback moth (Plutella xylostella) that were either susceptible or resistant to the Bt toxin. Survival, weight gain, and adult reproductive fitness did not differ between beetles fed prey reared on Bt-producing plants and those fed prey from control plants. Furthermore, while Bt-resistant prey was shown to deliver high levels of toxin to the beetle when they were consumed, no significant impact upon the beetle was observed. Subsequent investigation showed that in choice tests (Exposure), starved and partially satiated female beetles avoided Bt-fed susceptible prey, but not Bt-fed resistant prey. However, in the rare cases when starved females initially selected Bt-fed susceptible prey, they rapidly rejected them after beginning to feed. This prey type was shown to provide sufficient nutrition to support reproduction in the bioassay suggesting that Bt-fed susceptible prey is acceptable in the absence of alternative prey, however adults possess a discrimination ability based on prey quality. These results suggest that the direct effects of Bt-producing canola on predator life history was minimal, and that predators’ behavioural preferences may mitigate negative indirect effects of reduced quality of prey caused by consumption of Bt-producing plants. The results presented here therefore suggest that cultivation of Bt canola may lead to conservation of non-target predatory and scavenging organisms beneficial in pest control, such as carabids, and may therefore provide more sustainable agricultural systems than current practices. In addition, minimal impacts on beneficial carabids in agro-ecosystems suggest that Bt canola crops are likely to be compatible with integrated pest management (IPM) systems.  相似文献   

13.
Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt‐resistant insects on Bt and non‐Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt‐resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt‐resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non‐Bt cotton and on transgenic Bt cotton leaves expressing a single‐toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R0) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4‐day asynchrony of adult emergence between the susceptible T. ni grown on non‐Bt cotton leaves and the dual‐toxin‐resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants.  相似文献   

14.
Survival and fecundity of Colorado potato beetle adults, Leptinotarsa decemlineata (Say), that had or had not fed previously on non-transgenic potato before exposure to transgenic potato containing the Bacillus thuringiensis subsp. tenebrionis Cry3A toxin (Bt) was investigated. In the laboratory, < 5% of first-generation adults survived after two weeks when restricted to Bt foliage since eclosion, but over 85% of adults that had fed initially on non-Bt potato survived exposure to Bt potato for two weeks. In field experiments, less than 0.5% of adults that were exclusively provided Bt potato plants survived overwinter, whereas 44% to 57% survived overwinter when fed non-Bt potato plants for two weeks before being provided Bt potato as a final pre-overwintering host. Survival through the winter increased as the duration of initial feeding on non-Bt potato increased and was similar for beetles provided either tubers or Bt potato plants as a final pre-overwintering host. Only overwintered beetles that fed initially on non-Bt potato before encountering either tubers or Bt potato as a final pre-overwintering host laid eggs the following spring. Survival and reproduction of potato beetle adults after colonizing Bt potato fields should not be adversely affected as long as they have had sufficient time to feed initially on non-Bt potato. Implications for how potato production practices in the Mid-Atlantic US may affect the utility of general resistance management plans for Bt potato are discussed.  相似文献   

15.
Helicoverpa zea (Boddie) is a destructive agricultural pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1A.105 and Cry2Ab2 are two Bt proteins expressed in a widely planted maize event MON 89034. In this study, two tests (Test-I and Test-II) were conducted to evaluate the relative fitness of Bt-susceptible and -resistant H. zea on non-Bt diet (Test-I and Test-II) and a diet containing a mix of Cry1A.105 and Cry2Ab2 at a low concentration (Test-II only). Insect populations evaluated in Test-I were two Bt-susceptible strains and three Bt-resistant strains (a single-protein Cry1A.105-, a single-protein Cry2Ab2-, and a dual-protein Cry1A.105/Cry2Ab2-resistant strains). Test-II analyzed the same two susceptible strains, three backcrossed-and-reselected Cry1A.105/Cry2Ab2-single-/dual-protein-resistant strains, and three F1 heterozygous strains. Measurements of life table parameters showed that neither the single- nor dual-protein Cry1A.105/Cry2Ab2 resistance in H. zea was associated with fitness costs under the test conditions. The single Cry protein resistances at a concentration of a mix of Cry1A.105 and Cry2Ab2 that resulted in a zero net reproductive rate for the two susceptible strains were functionally incomplete recessive or codominant, and the dual-protein resistance was completely dominant. The lack of fitness costs could be a factor contributing to the rapid revolution of resistance to the Cry proteins in this species. Data generated from this study should aid our understanding of Cry protein resistance evolution and help in refining IRM programs for H. zea.  相似文献   

16.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

17.
This study examined the effect of diet, experimental design, and length of time in the laboratory on intercolonial agonism among Formosan subterranean termite, Coptotermes formosanus Shiraki, colonies. In pairings of 12 C. formosanus Shiraki colonies collected in an urban forest, there was no significant reduction in survival of termites in 30 out of 59 colony pairs compared to colony controls, but there was <50% survival in 18 colony pairs and <10% survival in six colony pairs. There was no correlation between the level of aggressive behavior and the laboratory diet of the termites. Effect of bioassay design and length of time in the laboratory was evaluated in three colony pairs where tests were first conducted on the day of field collection, then colony pairs were retested every 7 days. Aggressive behavior decreased over time in both bioassays, but it tended to decrease more rapidly in the Petri dish tests. The rapid loss of agonism in groups of termites kept in the laboratory demonstrates that changes in environmental factors affect intercolonial agonism. This article presents the results of research only. Mention of a commercial or proprietary product does not constitute endorsement or recommendation by the USDA.  相似文献   

18.
The direct effects of three soybean parentages, each represented by an Aphis glycines-resistant and susceptible isoline, on the fitness and performance of two key predators (Orius insidiosus and Harmonia axyridis) were evaluated in the laboratory. Predators were reared from hatch through adulthood in Petri dishes with cut trifoliolate leaves of the designated soybean variety, using eggs of Ephestia kuehniella as surrogate prey to eliminate prey-mediated effects of the host plant. Preimaginal survival and development, sex ratio, adult longevity, fecundity, and size were compared among treatments and a no-plant control. An additional experiment compared life-history parameters of predators caged with soybean versus Ipomoea hederacea (ivyleaf morning glory). Aphid resistance reduced the adult longevity of H. axyridis, but O. insidiosus was unaffected by resistance traits. However, adult O. insidiosus lived longer on soybeans with Group C base genetics than the other soybean varieties. Other parameters were not affected by soybean base genetics or resistance, but both predators generally performed worse on soybean than on I. hederacea or no-plant controls. The results suggest that soybean varietal selection, particularly with respect to A. glycines-resistance, may directly affect biological control agents. Also, implications of the generally poor suitability of soybean for natural enemies are discussed within the context of current crop production practices. Handling editor: Michael Smith  相似文献   

19.
European corn borer larvae, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) that have completed development on Event 176 Bt corn hybrids have survived exposure to sublethal doses of the Cry1Ab Bt toxin or are exploiting plant tissues that do not express the toxin. To evaluate the impact of such exposure, diapausing larvae were collected from Event 176 and conventional hybrids and compared for rates of pupation, parasitism, fitness (pupal weight, longevity, and fecundity) and susceptibility to the Cry1Ab toxin. Larvae completing development on Event 176 corn exhibited approximately 10% higher survival rates and correspondingly lower parasitism rates than larvae completing development on conventional hybrids. No significant differences were detected in pupal weight, fecundity, longevity or susceptibility to the Cry1Ab Bt toxin. These results indicate that survival on Event 176 corn are not adversely affect fitness and does not cause increased tolerance to the Cry1Ab toxin in subsequent generations.  相似文献   

20.
Bacillus thuringiensis (Bt) is a gram-positive, spore-forming bacterium and it produces insecticidal crystal (cry) proteins during sporulation. Because the genetic diversity and toxic potential of Bt strains differ from region to region, strains have been collected and characterized all over the world. The aim of this study is to isolate Bt strains in grain-related habitats in Turkey and to characterize them on the basis of crystal morphology, cry gene content, and chromosomal and plasmid DNA profiles. Four approaches were taken analysis with phase contrast (PC) microscopy, polymerase chain reaction (PCR), pulsed field gel electrophoresis (PFGE) and plasmid isolation. Ninety-six samples were collected from Central Anatolia and the Aegean region. Bt was isolated from 61 of 96 samples (63.5) and 500 Bt-like colonies were obtained. One hundred and sixty three of the colonies were identified as Bt based on cry protein formation using PC microscopy. Among the examined colonies, the overall proportion identified (as Bt index) was 0.33. We found that 103 isolates were positive for the five different cry genes (cry1, cry2, cry3, cry4 and cry9) examined with PCR. In addition, plasmid profiling of 37 cry gene-positive isolates indicated that the 15 kb plasmid band was present in all isolates; however, 11 of 37 isolates had more than one plasmid band at different sizes. Finally, chromosomal DNA profiling by PFGE gave rise to different DNA patterns for isolates containing the same cry gene which suggests a high level of diversity among the Bt strains isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号