首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

2.
The amino-terminal thrombolytic fragment (residues 1-191) of human apolipoprotein (apo) E was previously shown to be fully active in binding to the low density lipoprotein receptor. In this study, truncated apoE variants with progressive deletions at the carboxyl terminus were produced in Escherichia coli by linker-insertion mutagenesis to define the minimum amino-terminal structure necessary for full receptor binding. These truncated forms of apoE, comprising residues 1-166, 1-170, 1-174, or 1-183, were combined with the phospholipid dimyristoylphosphatidylcholine and tested for their ability to bind to low density lipoprotein receptors on human fibroblasts. All of the truncated variants formed typical discoidal particles when combined with the phospholipid, and the particles could be isolated by density gradient ultracentrifugation. The 1-166 and 1-170 variants had very little receptor binding activity (1%), whereas the 1-183 variant had nearly full activity (85%). The 1-174 variant had 19% activity. We conclude that the 171-183 region of apoE is important for receptor binding, either by contributing one or more residues essential for receptor binding or, more likely, by stabilizing or aligning the region known to be crucial for receptor binding, in the vicinity of residues 140-160.  相似文献   

3.
Conserved lysines and arginines within amino acids 140-150 of apolipoprotein (apo) E are crucial for the interaction between apoE and the low density lipoprotein receptor (LDLR). To explore the roles of amphipathic alpha-helix and basic residue organization in the binding process, we performed site-directed mutagenesis on the 22-kDa fragment of apoE (amino acids 1-191). Exchange of lysine and arginine at positions 143, 146, and 147 demonstrated that a positive charge rather than a specific basic residue is required at these positions. Consistent with this finding, substitution of neutral amino acids for the lysines at positions 143 and 146 reduced the binding affinity to about 30% of the wild-type value. This reduction corresponds to a decrease in free energy of binding of approximately 600 cal/mol, consistent with the elimination of a hydrogen-bonded ion pair (salt bridge) between a lysine on apoE and an acidic residue on the LDLR. Binding activity was similarly reduced when K143 and K146 were both mutated to arginine (K143R + K146R), indicating that more than the side-chain positive charge can be important.Exchanging lysines and leucines indicated that the amphipathic alpha-helical structure of amino acids 140-150 is critical for normal binding to the low density lipoprotein receptor.  相似文献   

4.
Previously, using a synthetic peptide strategy, we determined that four distinct regions of human beta-thyrotropin (beta TSH) were responsible for interaction of TSH with the TSH receptor. The most potent of these four regions was the carboxyl-terminus of the subunit, represented by the peptide sequence beta 101-112, which inhibited binding of radiolabeled beta TSH to receptor in radioreceptor assay with an IC50 of approximately 100 microM. In the current studies, we systematically substituted the native amino acids in region beta 101-112 with alanine, and we have determined which residues within this span are important to the binding activity of TSH to its receptor. Substitution of Lys101, Asn103, Tyr104, Cys105, Lys107, and Lys110 with alanine each caused a significant fall in activity as compared to the native sequence, whereas substitution at the remaining positions had little or no effect. Because three of these residues are positively charged at physiologic pH, we hypothesized that this charge may be important to the binding activity of the sequence. We modified the charge characteristics of the region by synthesizing two series of analogs in which the residues identified in the alanine substitution studies were substituted with Arg, D-Lys, and D-Arg at each position. In addition, a series of analogs containing basic residues, either added to or substituted for nonbasic residues in the sequence beta 101-112, was synthesized. Substitution of Arg, D-Lys, and D-Arg for Lys101, Lys107, and Lys110 had little effect on activity; however, inclusion of additional basic residues in the beta 101-112 sequence significantly enhanced the inhibitory activity of the region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pham T  Kodvawala A  Hui DY 《Biochemistry》2005,44(20):7577-7582
Apolipoprotein E (apoE) is a 34-kDa lipid-associated protein present in plasma and in the central nervous system. Previous studies have demonstrated that apoE has multiple functions, including the ability to transport lipids, regulate cell homeostasis, and inhibit lipid oxidation. The lipid binding domain of apoE has been localized to the carboxyl-terminal domain, whereas a cluster of basic amino acid residues within the N-terminal domain is responsible for its receptor binding activity. This study was undertaken to identify the domain in apoE responsible for its antioxidant activity. Results showed that apoE inhibits Cu(2+)-induced LDL oxidation by delaying conjugated diene formation in a concentration-dependent manner. Reductive methylation of lysine residues or cyclohexanedione modification of arginine residues in apoE abolished its ability to inhibit LDL oxidation. Additional studies showed that a 22-kDa peptide containing the N-terminal domain of apoE3 was more effective than a similar peptide with the apoE4 sequence in inhibiting Cu(2+)-induced LDL oxidation. In contrast, the 10-kDa peptide that contains the C-terminal domain of apoE was ineffective. Inhibition of Cu(2+)-induced LDL oxidation can also be accomplished with a peptide containing either a single sequence or a tandem repeat sequence of the receptor binding domain (residues 141-155) of apoE. Taken together, these results localized the antioxidant domain of apoE to its receptor binding domain and the basic amino acids in this domain are important for its antioxidant activity.  相似文献   

6.
Apolipoprotein (apo) E plays a major role in lipid metabolism by mediating cellular uptake of lipoprotein particles through interaction with members of the low density lipoprotein (LDL) receptor family. The primary region of apoE responsible for receptor binding has been limited to a cluster of basic amino acids between residues 134 and 150, located in the fourth helix of the N-terminal domain globular helix bundle structure. To investigate structural and functional requirements of this "receptor binding region" we engineered an apolipoprotein chimera wherein residues 131-151 of human apoE were substituted for residues 146-166 (helix 5) of Manduca sexta apolipophorin III (apoLp-III). Recombinant hybrid apolipoprotein was expressed in Escherichia coli, isolated, and characterized. Hybrid apolipoprotein and apoE3-N-terminal, but not apoLp-III, bound to heparin-Sepharose. Far UV circular dichroism spectroscopy revealed the presence of predominantly alpha-helix secondary structure, and stability studies revealed a urea denaturation midpoint of 1.05 m, similar to wild-type apoLp-III. Hybrid apolipoprotein-induced dimyristoylphosphatidylcholine (DMPC) bilayer vesicle solubilization activity was significantly enhanced compared with either parent protein, consistent with detection of solvent-exposed hydrophobic regions on the protein in fluorescent dye binding experiments. Unlike wild-type apoLp-III.DMPC complexes, disc particles bearing the hybrid apolipoprotein competed with 125ILDL for binding to the LDL receptor on cultured human skin fibroblasts. We conclude that a hybrid apolipoprotein containing a key receptor recognition element of apoE preserves the structural integrity of the parent protein while conferring a new biological activity, illustrating the potential of helix swapping to introduce desirable biological properties into unrelated or engineered apolipoproteins.  相似文献   

7.
Human plasma apolipoprotein E (apoE) is a low density lipoprotein (LDL) receptor ligand. It targets cholesterol-rich lipoproteins to LDL receptors on both hepatic and peripheral cells. The region of apoE responsible for its binding to the LDL receptor has been localized to amino acids 140-160. An apoE 141-155 monomeric peptide and a dimeric 141-155 tandem peptide were synthesized and tested for their inhibition of 125I-LDL degradation by human fibroblasts and human monocytic-like cells, THP-1. The monomer had no activity at 250 microM, but the dimer inhibited 125I-LDL degradation by 50% at 5 microM. The inhibition was specific for the LDL receptor because the dimer did not inhibit the degradation of 125I-acetylated LDL by scavenger receptors expressed by phorbol ester-stimulated THP-1 cells. As reported for native apoE, amino acid substitutions of Lys-143----Ala, Leu-144----Pro, and Arg-150----Ala decreased the inhibitory effectiveness of the dimer. Furthermore, a trimer of the 141-155 sequence had a 20-fold greater inhibitory activity than the dimer. Studies with a radioiodinated dimer indicated that some of the inhibitory activity could be a result of the interaction of the dimer with LDL. However, direct binding of the 125I-dimeric peptide to THP-1 cells was observed as well. This binding was time-dependent, linear with increasing cell number, Ca(2+)- but not Mg(2+)-dependent, saturable, inhibited by lipoproteins, and increased by preculture of the cells in lipoprotein-depleted medium. Therefore, a synthetically prepared dimeric repeat of amino acid residues 141-155 of apoE binds the LDL receptor.  相似文献   

8.
The N terminal domain of human apolipoprotein E3 (apoE3-NT) functions as a ligand for members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid-free apoE3-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational change is required for LDLR recognition. To investigate the role of a leucine zipper motif identified in the helix bundle on lipid binding activity, three leucine residues in helix 2 (Leu63, Leu71 and Leu78) were replaced by alanine. Recombinant "leucine to alanine" (LA) apoE3-NT was produced in E. coli, isolated and characterized. Stability studies revealed a transition midpoint of guanidine hydrochloride induced denaturation of 2.7 M and 2.1 M for wild type (WT) and LA apoE3-NT, respectively. Results from fluorescent dye binding assays revealed that, compared to WT apoE3-NT, LA apoE3-NT has an increased content of solvent exposed hydrophobic surfaces. In phospholipid vesicle solubilization assays, LA apoE3-NT was more effective than WT apoE3-NT at inducing a time-dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. Likewise, in lipoprotein binding assays, LA apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent than WT apoE3-NT. On the other hand, LA apoE3-NT and WT apoE3-NT were equivalent in terms of their ability to bind a soluble LDLR fragment. The results suggest that the leucine zipper motif confers stability to the apoE3-NT helix bundle state and may serve to modulate lipid binding activity of this domain and, thereby, influence the conformational transition associated with manifestation of LDLR binding activity.  相似文献   

9.
We have previously found that a 14-amino acid residue-peptide, T140, inhibits infection of target cells by T cell line-tropic HIV-1 (X4-HIV-1) through its specific binding to a chemokine receptor, CXCR4. Here, the importance of an L-3-(2-naphthyl)alanine (Nal) residue at position 3 in T140 for high anti-HIV activity and inhibitory activity against Ca(2+) mobilization induced by stromal cell-derived factor (SDF)-1alpha-stimulation through CXCR4 has initially been shown by the synthesis and biological evaluation of several analogues, where Nal(3) is substituted by diverse aromatic amino acids. Next, the order of the N-terminal 3 residues (Arg(1)-Arg(2)-Nal(3)) has been proved to be important from the structure--activity relationship (SAR) study shuffling these residues. Based on these results, we have found 10-residue peptides possessing modest anti-HIV activity by systematic antiviral evaluation of a series of synthetic, shortened analogues of T140.  相似文献   

10.
《Gene》1998,212(1):5-11
The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, φ31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against φ31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.  相似文献   

11.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

12.
Apolipoprotein (apo) E3-Leiden is a variant of apoE that is associated with dominant expression of type III hyperlipoproteinemia and that is defective in binding to the low density lipoprotein receptor. Therefore, the structure of apoE3-Leiden was investigated. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis apoE3-Leiden and its 22-kDa amino-terminal thrombolytic fragment migrated with a higher than normal apparent molecular weight. The structural abnormality of apoE3-Leiden was determined by sequencing its CNBr-, tryptic-, and Staphylococcus aureus V8 protease-generated peptides. In contrast to normal apoE3, which has a cysteine at residue 112, apoE3-Leiden does not contain any cysteine and has an arginine at position 112 (as does apoE4, which also completely lacks cysteine). The basis for the molecular weight difference was determined to be a seven-amino acid insertion that is a tandem repeat of residues 121-127 of normal apoE3, i.e. Glu-Val-Gln-Ala-Met-Leu-Gly, resulting in apoE3-Leiden having 306 amino acids rather than 299. The negatively charged glutamyl residues within the insertion compensates for the arginine substitution at residue 112; thus apoE3-Leiden focuses in the E3 position. The low density lipoprotein receptor binding activities of both intact apoE3-Leiden and its 22-kDa thrombolytic fragment were determined in an in vitro assay. Although apoE3-Leiden had only about 25% of normal binding activity, its 22-kDa thrombolytic fragment had nearly normal binding, suggesting that the carboxyl-terminal domain of apoE3-Leiden modulates the receptor binding function of its amino-terminal domain.  相似文献   

13.
The structural requirements for internalization and signalling of the vasopressin V1a receptor were investigated in stably transfected HEK-293 cells. Removal of the 51 C-terminal amino acids did not affect vasopressin binding, calcium signalling, heterologous desensitization or internalization of the receptor. Deletion of 14 additional amino acids reduced vasopressin-dependent calcium increase and impaired receptor internalization. Substitution of cysteines 371-372 did not affect intracellular signalling, but decreased endocytosis by 26%. Substitution of the 361-362 leucine by alanine residues reduced by 56% V1a receptor sequestration without affecting calcium signalling. These results indicate that di-cysteine and mostly di-leucine motifs present in the C-terminal region of the V1a receptor are involved in its internalization.  相似文献   

14.
15.
16.
The glucocorticoid receptor (GR) DNA binding domain consists of several conserved amino acids and folds into two zinc finger-like structures. Previous transactivation experiments indicated that three amino acids residing in this region, Gly, Ser and Val, appear to be critical for target-site discrimination. Based on the solved crystal structure, these residues are at the beginning of an amphipathic alpha-helix that interacts with the DNA's major groove; of these, only valine, however, contacts DNA. In order to examine their functional role directly, we have substituted these residues for the corresponding amino acids from the estrogen receptor (ER), overexpressed and purified the mutant proteins, and assayed their binding specificity and affinity by gel mobility shifts using glucocorticoid or estrogen response elements (GRE or ERE, respectively) as DNA probes. We find that all three residues are indeed required to fully switch GR's specificity to an ERE. The contacting valine in GR is of primary importance. The corresponding residue in ER, alanine, is less important for specificity, while glutamic acid, four amino acids towards the N-terminus, is most critical for ER discrimination. Finally, we show that the GR DNA binding domain carrying all three ER-specific mutations has a significantly higher affinity for an ERE than the ER DNA binding domain itself. We interpret these results in the context of both the data presented here and the crystal structure of the GR DNA binding domain complexed to a GRE.  相似文献   

17.
Type III hyperlipoproteinemia typically is associated with homozygosity for apolipoprotein (apo) E2(Arg158----Cys). Dominant expression of type III hyperlipoproteinemia associated with apoE phenotype E3/3 is caused by heterozygosity for a human apoE variant, apoE3(Cys112----Arg, Arg142----Cys). However, this apoE3 variant was not separable from the normal apoE3 in these patients' plasma because the two proteins have identical amino acid composition, charge, and molecular weight. Therefore, to determine the functional characteristics of this protein, we used recombinant DNA techniques to produce this apoE variant in bacteria. We also produced a non-naturally occurring variant, apoE(Arg142----Cys), that had only the cysteine substituted at residue 142. These two apoE variants were purified from cell lysates of the transfected Escherichia coli by ultracentrifugal flotation in the presence of phospholipid, by gel filtration chromatography, and by heparin-Sepharose chromatography. Both Cys142 apoE variants bound to lipoprotein receptors on human fibroblasts with only about 20% of normal binding activity. Therefore, cysteine at residue 142, not arginine at residue 112, is responsible for the decreased receptor binding activity of the variants. Cysteamine treatment and removal of the carboxyl-terminal domain had little effect on the binding activity, whereas both modulate the receptor binding activity of apoE2(Arg158----Cys). The mutation at residue 142 decreased the binding activity of apoE to both heparin and the monoclonal antibody 1D7 (this antibody inhibits receptor binding of apoE), whereas apoE2(Arg158----Cys), which is associated with recessive expression of type III hyperlipoproteinemia, binds normally to both. The Arg112, Cys142 variant predominantes 3:1 over normal apoE3 in the very low density lipoproteins of plasma from an affected subject, as assessed by differential reactivity with the antibody 1D7. The unique combination of functional properties of the Arg112, Cys142 variant provides a possible explanation for its association with dominant expression of type III hyperlipoproteinemia.  相似文献   

18.
The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding to DNA, in activating Rta, in stimulating early lytic gene expression, and in promoting viral DNA replication and viral late gene expression. These results are discussed in relationship to the recently solved crystal structure of ZEBRA bound to an AP-1 site.  相似文献   

19.
Synthetic peptides were used to probe the structure-function relationships between human choriotropin (hCG) and the lutropin (LH) receptor. Previously, a peptide region of the alpha subunit of hCG, residues 26-46, had been shown to inhibit binding of 125I-hCG to the LH receptor in rat ovarian membranes (Charlesworth, M.C., McCormick, D.J., Madden, B., and Ryan, R.J. (1987) J. Biol. Chem. 262, 13409-13416). To determine which residues are important for this inhibitory activity, peptides were truncated from either the amino or carboxyl terminus, or individual residues were substituted with alanine. The amino-terminal boundary was determined to be Gly-30 and the carboxyl-terminal boundary, Lys-44. This core peptide contained all the residues needed for full activity of the parent peptide 26-46. Arg-35 and Phe-33 were particularly important residues; when they were substituted with alanine, the peptide inhibitory potencies were decreased. Ser-43, Arg-42, Cys-32, and Cys-31 were also important but to a lesser degree. These results are consistent with predictions based on chemical and enzymatic modification studies and provide insight into which residues are important for interaction between hCG and the LH receptor.  相似文献   

20.
Imperatoxin A (IpTxa), a 3.7 kDa peptide from the African scorpion Pandinus imperator, is an agonist of the skeletal muscle ryanodine receptor (RyR1). In order to study the structure of the toxin and its effect on RyR1, IpTxa cDNA was PCR-amplified using 3 pairs of primers, and the toxin was expressed in E. coli. The toxin was further purified by chromatography, and various point mutants in which basic amino acids were substituted by alanine were prepared by site-directed mutagenesis. Studies of single channel properties by the planar lipid bilayer method showed that the recombinant IpTxa was identical to the synthetic IpTxa with respect to high-performance liquid chromatography mobility, amino acid composition and specific effects on RyR1. Mutations of certain basic amino acids (Lys19, Arg23, and Arg33) dramatically reduced the capacity of the peptide to activate RyRs. A subconductance state predominated when Lys8 was substituted with alanine. These results suggest that some basic amino acid residues in IpTxa are important for activation of RyR1, and that Lys8 plays an important role in regulating the gating mode of RyR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号