首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
ATM、ATR和DNA损伤介导的细胞周期阻滞   总被引:9,自引:0,他引:9  
朱虹  缪泽鸿  丁健 《生命科学》2007,19(2):139-148
ATM和ATR属于PIKK家族,是DNA损伤检查点的主要成员。它们被不同类型的DNA损伤所激活,通过磷酸化相应的下游蛋白Chk1和Chk2等,调节细胞周期各个检查点,引起细胞周期阻滞,使DNA损伤得以修复。ATM和ATR在维持基因组的稳定性中起到至关重要的作用。本文着重综述有关ATM和ATR在DNA损伤介导的细胞周期阻滞中发挥的作用以及相互关系的最新研究进展。  相似文献   

2.
DNA放射损伤与p53   总被引:1,自引:0,他引:1  
Qian X  Zhu YB 《生理科学进展》2005,36(4):379-381
电离辐射等多种因素可以引起DNA损伤,表现为碱基改变、DNA双链断裂(DNA double-strand breaks,DSBs)和DNA单链断裂(Single-strand breaks,SSBs)等多种形式。DNA损伤后,细胞发生应答,即引起细胞周期阻滞和/或细胞程序性死亡,以减少损伤引起的染色体畸变和基因组不稳定。在细胞应答过程中,p53蛋白水平和活性均发生变化,介导细胞周期阻滞、程序性死亡,并直接参与DNA损伤修复过程。  相似文献   

3.
DNA损伤检验点调控的分子机制   总被引:1,自引:0,他引:1  
Guo YH  Zhu YB 《生理科学进展》2007,38(3):208-212
多种因素可以引起DNA损伤而最终导致基因产生错义突变、缺失或错误重组。为确保遗传准确性,细胞形成了复杂的细胞周期监督机制,即细胞周期检验点。其中DNA损伤检验点由许多检验点相关蛋白组成,可以识别损伤的DNA,经复杂的信号转导途径引发蛋白激酶的级联反应,减慢或阻滞细胞周期进程,从而为细胞修复损伤的DNA赢得时间。  相似文献   

4.
DNA损伤应答机制的存在有助于机体基因组稳定性的维持. BRCA1是一种重要的肿瘤抑制基因,它在DNA损伤应答中发挥了重要的作用. BRCA1可以与BARD1结合形成稳定的异源二聚体,作为BRCA1复合体蛋白组分的核心参与了DNA损伤信号传递、同源重组修复、DNA复制、细胞周期等多途径的调控.本文主要对BRCA1功能及其参与DNA损伤应答网络调控展开阐述,并总结了利用PARP抑制剂针对BRCA1突变肿瘤进行治疗产生耐药性的多种机制.  相似文献   

5.
 以体外培养的不同代龄的人胚肺二倍体成纤维细胞(2 B S)为对象,紫外线诱导 D N A 损伤后,观察细胞形态、增殖特性、细胞周期、 D N A 修复变化等细胞应答以及 gadd153、p21 W A F1/ C I P1/ S D I1、p53 等基因的转录水平的表达变化.结果显示:紫外线诱导 D N A 损伤后,衰老(> 55 代)2 B S细胞形态及增殖能力的改变不如年轻细胞(< 30 代)显著;不同代龄的细胞损伤后均出现 G1 期阻滞现象,年轻细胞 G1 期阻滞率明显高于衰老细胞( P< 005);衰老细胞总的修复能力较年轻细胞明显下降( P< 001);同时,gadd153、p21、p53 等的可诱导性均低于年轻 2 B S细胞.由此,分别在细胞水平与基因水平反映了衰老细胞经紫外线照射损伤后的细胞应答变化与修复机能减退的关系.  相似文献   

6.
真核生物DNA的复制与染色质结构变化及细胞周期进程密切相关,伴有组蛋白代谢变化和核小体的解聚与重组装。细胞周期蛋白p34^cdc2激酶在S期的活性变化对真核生物DNA复制有调节作用。  相似文献   

7.
8.
人类生存环境中的有害物质、机体正常代谢产生的氧化自由基、端粒缩短或端粒酶活性改变、原癌基因激活或抑癌基因失活等均可造成DNA损伤。通过启动DNA损伤修复反应,激活p53/p21或p16/Rb信号转导途径可以引发细胞周期阻滞,为修复破损的DNA赢得时间,避免不完整的DNA信息继续传递下去。过度的细胞周期阻滞将引起不可逆的细胞增殖停滞并最终引起细胞衰老,而当损伤的DNA没有完全修复就无限制的进入细胞周期时,将会诱发肿瘤的形成。肿瘤和衰老的发生机制是相互对立、相互交织的,而DNA损伤修复反应是联系二者的纽带。  相似文献   

9.
细胞DNA损伤检控点   总被引:1,自引:0,他引:1  
细胞周期检控点是维持细胞基因组稳定性的一个重要机制,主要包括。DNA损伤检控点、DNA复制检控点和纺锤体组装检控点。其中DNA损伤检控点能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,为修复损伤提供足够的时间,以保证细胞遗传的稳定性。有关DNA损伤检控点的研究近年来已经取得了突破性进展,现简要介绍近年来在DNA损伤检控点研究中的一些新进展。  相似文献   

10.
从辐照剂量和修复时间两个角度研究了重离子辐照对肿瘤细胞DNA损伤及细胞周期的影响,为重离子治癌的临床应用积累基础数据。不同剂量的80MeV/u^20Ne^10 辐照SMMC—7721细胞样品,利用单细胞凝胶电泳技术(Single Cell Gel Electrophoresis,SCGE)对细胞DNA损伤进行了检测,利用流式细胞技术(Flow Cytometry Methods,FCM)对细胞周期变化进行了分析。80MeV/u^20Ne^10 辐照后4小时内,SMMC—7721细胞的DNA损伤与辐照剂量呈线性关系,在0小时组其线性相关因子r为0.9621,4小时组为0.914;随着修复时间的增加,DNA损伤与辐照剂量不再线性相关,但0.5Gy,1Gy和2Gy三个剂量点的DNA损伤程度极为相近。另外,重离子辐照后SMMC—7721细胞发生S期和G2/M期阻滞现象,其随剂量变化及时间变化的规律不同于X、γ等低LET(Linear Energy Transfer)射线辐照。  相似文献   

11.
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named “chronocrisis”) of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.  相似文献   

12.
UV反应不一定等同于DNA损伤反应   总被引:5,自引:0,他引:5  
哺乳类细胞遭受紫外线(UV)和其他DNA损伤剂作用后短时间内出现的基因转录诱导称为UV反应.过去认为这种反应是DNA损伤的结果.但是近年来的一些研究对这一观点提出了不少质疑,因而有必要在此讨论几个产生争议的主要问题,并对UV反应的触发机制及UV反应的功能作一些探讨  相似文献   

13.
Juxtanuclear aggresomes form in cells when levels of aggregation-prone proteins exceed the capacity of the proteasome to degrade them. It is widely believed that aggresomes have a protective function, sequestering potentially damaging aggregates until these can be removed by autophagy. However, most in-cell studies have been carried out over a few days at most, and there is little information on the long term effects of aggresomes. To examine these long term effects, we created inducible, single-copy cell lines that expressed aggregation-prone polyglutamine proteins over several months. We present evidence that, as perinuclear aggresomes accumulate, they are associated with abnormal nuclear morphology and DNA double-strand breaks, resulting in cell cycle arrest via the phosphorylated p53 (Ser-15)-dependent pathway. Further analysis reveals that aggresomes can have a detrimental effect on mitosis by steric interference with chromosome alignment, centrosome positioning, and spindle formation. The incidence of apoptosis also increased in aggresome-containing cells. These severe defects developed gradually after juxtanuclear aggresome formation and were not associated with small cytoplasmic aggregates alone. Thus, our findings demonstrate that, in dividing cells, aggresomes are detrimental over the long term, rather than protective. This suggests a novel mechanism for polyglutamine-associated developmental and cell biological abnormalities, particularly those with early onset and non-neuronal pathologies.  相似文献   

14.
昼夜节律和细胞周期是生命有机体中两种主要的节律性、周期性的活动,参与机体代谢与生理节律.在分子水平上,它们的周期性活动是由一种周期性振荡的网络构成的,这种网络由一系列节律性表达的蛋白所形成.研究发现,多种节律因子通过调节周期蛋白的表达影响细胞周期进程,如G 1-S期,REV-ERBa抑制p21促进细胞进程,RORα激活p21抑制细胞进程,DEC1抑制cyclinD1,CLOCK/BMAL1负调控c-Myc;G 2-M期,BMAL1/CLOCK、BMAL1/NPAS2或Cry1作用于Wee1抑制或激活G2-M期进程.此外,昼夜节律钟蛋白也参与了DNA损伤修复及细胞死亡的过程:Per1、Tim分别作用于ATM、ATR,因而促进细胞周期停滞,p53缺失的细胞中敲除Cry促进细胞凋亡过程,抑制了肿瘤的形成,DEC1以p53依赖的方式促细胞衰老等.同时,节律因子的紊乱引起多种疾病的产生.因此,阐明昼夜节律对细胞周期及死亡的影响,将为肿瘤的治疗提供分子理论基础.  相似文献   

15.
环六亚甲基双乙酰胺(HMBA)对MGc80-3不同时相细胞内cAMP-PKA与DAG-PKC两大系统不仅具有正负调控作用,而且其作用具有周期特异性. 其中G1期是最敏感的调控时相,与对照组相比,cAMP水平上升102.3%,PKA活性升高348%,DAG含量下降51.4%,PKC活性降低32.3%;次敏感时相为G2期;M期基本没受影响;S期变化规律不同于其他时相.  相似文献   

16.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号