首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.  相似文献   

2.
Rates of aminoacyl-tRNA selection at 29 sense codons in vivo   总被引:24,自引:0,他引:24  
We have placed aminoacyl-tRNA selection at individual codons in competition with a frameshift that is assumed to have a uniform rate. By assaying a reporter in the shifted frame, relative rates for association of the 29 YNN codons and their cognate aminoacyl-tRNAs were obtained during logarithmic growth in Escherichia coli. For five codons, three beginning with C and two with U, these relative rates agree with relative in vitro rates for elongation factor Tu-mediated aminoacyl-tRNA binding to ribosomes and subsequent GTP hydrolysis. Therefore, the frameshift assay probably measures this process in vivo. Observed rates for aminoacyl-tRNA selection span a 25-fold range. Therefore, the time required to transit different codons in vivo probably differs substantially. Codons very frequently used in highly expressed genes generally select aminoacyl-tRNAs more quickly than do rarely used codons. This suggests that speed of aminoacyl-tRNA selection is a significant factor determining biased use of synonymous codons. However, the preferential use of codons appears to be marked only for codons with the highest rates of aminoacyl-tRNA selection. Rapid selection in vivo is usually effected by elevation of the tRNA concentration for codons with moderate intrinsic speed (rate constant), not by choosing intrinsically fast codons. Despite a preference for high rate, there are quickly translated codons that are not commonly used, and common codons that are translated relatively slowly. Other factors are therefore more important than speed for some codons. Strong preference for rapid aminoacyl-tRNA selection is not observed in weakly expressed genes. Instead, there is a slight preference for slower aminoacyl-tRNA selection. The rate of aminoacyl-tRNA selection by a YNC codon is always greater than the rate of the corresponding YNU codon even though in many YNC/U pairs both codons react with the same elongation factor Tu/GTP/aminoacyl-tRNA complex. Thus, for these tRNAs, the differences between in vivo rate constants of tRNAs are dependent on the nature of anticodon base-pairing. However, no more general relationship is evident between codon/anticodon composition and rate of aminoacyl-tRNA selection. The frameshift method can be extended to all codons.  相似文献   

3.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

4.
Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.  相似文献   

5.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

6.
Codon usage data of bacteriophage T4 genes were compiled and synonymous codon preferences were investigated in comparison with tRNA availabilities in an infected cell. Since the genome of T4 is highly AT rich and its codon usage pattern is significantly different from that of its host Escherichia coli, certain codons of T4 genes need to be translated by appropriate host transfer RNAs present in minor amounts. To avoid this predicament, T4 phage seems to direct the synthesis of its own tRNA molecules and these phage tRNAs are suggested to supplement the host tRNA population with isoacceptors that are normally present in minor amounts. A positive correlation was found in that the frequency of E. coli optimal codons in T4 genes increases as the number of protein monomers per phage particle increases. A negative correlation was also found between the number of protein monomers per phage and the frequency of "T4 optimal codons", which are defined as those codons that are efficiently recognized by T4 tRNAs. From these observations it was proposed that tRNAs from the host are predominantly used for translation of highly expressed T4 genes while tRNAs from T4 tend to be used for translation of weakly expressed T4 genes. This distinctive tRNA-usage in T4 may be an optimization of translational efficiency, and an adjustment of T4-encoded tRNAs to the synonymous codon preferences, which are largely influenced by the high genomic AT-content, would have occurred during evolution.  相似文献   

7.
T Ohama  A Muto    S Osawa 《Nucleic acids research》1990,18(6):1565-1569
The GC (G + C, or G or C)-contents of codon silent positions in all two-codon sets and three codons AUY/A (IIe), and in most of the family boxes of Micrococcus luteus (genomic GC-content: 74%) are 95% to 100% in both the highly and weakly expressed genes. In some family boxes, there is a decrease in NNC codons and an increase in NNG codons from the highly expressed to weakly expressed genes without apparent involvement of NNU and NNA codons. From these observations, we conclude that the selective use of synonymous codons in M. luteus may be largely determined by GC-biased mutation pressure and that in the highly expressed genes tRNAs would act as a weak selection pressure in some family boxes. Available data suggest that the effect of selection pressure by tRNAs on the synonymous codon choice becomes more apparent in the highly expressed genes in eubacteria with intermediate GC-contents such as Escherichia coli and Bacillus subtilis, and that the U/C ratio of the codon third positions in NNU/C-type two-codon sets in the weakly expressed genes would represent the approximate magnitude of directional mutation pressure throughout eubacteria.  相似文献   

8.
The number and relative amount of isoacceptor tRNAs for each amino acid in Micrococcus luteus, a Gram-positive bacterium with high genomic G + C content, have been determined by sequencing their anticodon loop and its adjacent regions and by selective labelling of tRNAs. Thirty-one tRNA species with 29 different anticodon sequences have been detected. All the tRNAs have G or C at the anticodon first position except for tRNA(ICGArg) and tRNA(NGASer), in response to the abundant usage of NNC and NNG codons. No tRNA with the anticodon UNN capable of translating codon NNA has been detected, in accordance with a very low or zero usage of NNA codons. The relative amount of isoacceptor tRNAs for an amino acid determined by selective labelling strongly correlates with usage of the corresponding codons. On the basis of these and other observations in this and other eubacterial species, we conclude that the relative amount and anticodon composition of isoacceptor tRNA species are flexible, and their changes are mainly adaptive phenomena that have been primarily affected by codon usage, which in turn is affected by directional mutation pressure.  相似文献   

9.
10.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

11.
Many clostridial proteins are poorly produced in Escherichia coli. It has been suggested that this phenomena is due to the fact that several types of codons common in clostridial coding sequences are rarely used in E. coli and the quantities of the corresponding tRNAs in E. coli are not sufficient to ensure efficient translation of the corresponding clostridial sequences. To address this issue, we amplified three E. coli genes, ileX, argU, and leuW, in E. coli; these genes encode tRNAs that are rarely used in E. coli (the tRNAs for the ATA, AGA, and CTA codons, respectively). Our data demonstrate that amplification of ileX dramatically increased the level of production of most of the clostridial proteins tested, while amplification of argU had a moderate effect and amplification of leuW had no effect. Thus, amplification of certain tRNA genes for rare codons in E. coli improves the expression of clostridial genes in E. coli, while amplification of other tRNAs for rare codons might not be needed for improved expression. We also show that amplification of a particular tRNA gene might have different effects on the level of protein production depending on the prevalence and relative positions of the corresponding codons in the coding sequence. Finally, we describe a novel approach for improving expression of recombinant clostridial proteins that are usually expressed at a very low level in E. coli.  相似文献   

12.
It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GPsiU, U35 at the anticodon second position being modified to pseudouridine (Psi). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each-tRNAHis, tRNAAsp and tRNATyr-were found to possess unmodified U35 in all cases, suggesting the importance of Psi35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GPsiU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was approximately 2-fold higher in the case of tRNAAlaGPsiU than tRNAAlaGUU. These findings imply that Psi35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria.  相似文献   

13.
Suppressors of lysine codons may be misacylated lysine tRNAs   总被引:4,自引:2,他引:2  
We describe a novel class of missense suppressors that read the codons for lysine at two positions (211 and 234) in the trpA polypeptide of Escherichia coli. The suppressor mutations are highly linked to lysT, a gene for lysine tRNA. The results suggest that the suppressors are misacylated lysine tRNAs that carry glycine or alanine. The mutant codons are apparently suppressed better at position 211 than at position 234, indicating the existence of codon context effects in missense suppression.  相似文献   

14.
Modulation of lambda integrase synthesis by rare arginine tRNA   总被引:6,自引:1,他引:5  
Lambda's int gene contains an anomalously high frequency of the rare arginine codons AGA and AGG when compared to genes of Escherichia coli or to the rest of phage lambda. These are the least frequent codons in genes of E. coli and are recognized by the rarest tRNAs. The presence of these codons reduces the translation rate and, depending on the context, this can strongly modulate translational efficiency by a variety of mechanisms. In this study, we show that expression of the natural int gene may also be modulated by rare arginine codon usage, and we explore this mechanism.  相似文献   

15.
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon–codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon–codon affinity, the extent of base modifications within or 3′ of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3′ side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.  相似文献   

16.
Extension of biochemical functions has been attempted by introducing nonatural amino acids and artificial nucleic acid analogs. Nonnatural amino acids have been linked to tRNAs and the amino-acylated tRNAs were added to E. coli in vitro protein synthesizing system to produce nonnatural mutant proteins. The positions of the nonnatural amino acids have been assigned by the 4-base codons, like CGGG and AGGU. The extended codons have been introduced at a specific position or at random positions on a DNA. In the latter case, a DNA library that contains a single 4-base codon at random positions can be obtained. The combination of these new techniques opens a way to the introduction of artificial functions to biochemical systems.  相似文献   

17.
Role of the code redundancy in determining cotranslational protein folding   总被引:1,自引:0,他引:1  
It has been demonstrated earlier in our laboratory that rare codon clusters can determine the boundaries of the polypeptide chain fragments of the same secondary structure type during the co-translational protein folding. According to this data, co-translational protein folding can occur under condition of a correlation between the frequency of codon choice in mRNAs and the relative abundance of their isoaccepting tRNAs. The alterations in the spectrum and concentrations of the isoaccepting tRNAs in different cells were demonstrated by many authors. The existence of a mechanism of the coordinate regulation of the levels (activities) of the isoaccepting tRNAs, corresponding aminoacyl-tRNA synthetases and mRNAs predominantly translated at a given moment of time can be suggested. Such a mechanism can ensure the needed accuracy of the protein folding process. Analysis of gene sequences of various pro- and eukaryotic organisms carried out in the present work revealed that the codon usage frequency spectra of simultaneously synthesized proteins are similar. The relative appearance of the most rare and frequent codons in investigated gene sequences displays a high degree of conservatism. It has also been found that structural-homologous proteins from different organisms (cytochromes c, myoglobins) have very similar codon frequency distribution profiles. This property retains despite the significant variations in the codon usage spectra in the investigated gene sequences. The data obtained indicate that the codon distribution in mRNAs whose diversity is mainly conditioned by the genetic code redundance is a program that determines translational rates of different mRNA parts thus controlling the spatial folding of the synthesized peptide chain.  相似文献   

18.
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.  相似文献   

19.
The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, respectively, in E. coli genes. Searches for corresponding occurrences in other bacteria provide no strong support for the functional utilization of frameshifting at these sequences. All sequences tested in their native context showed 1.5 to 11% frameshifting when expressed from multicopy plasmids. A cassette with one of these sequences singly integrated into the chromosome in stringent cells gave 0.9% frameshifting in contrast to two- to four-times-higher values obtained from multicopy plasmids in stringent cells and eight-times-higher values in relaxed cells. Thus, +1 frameshifting efficiency at AGG_AGG and AGA_AGA is influenced by the mRNA expression level. These tandem rare codons do not occur in highly expressed mRNAs.  相似文献   

20.
Genes of adenine-specific DNA-methyltransferase M.BspLU11IIIa and cytosine-specific DNA-methyltransferase M.BspLU11IIIb of the type IIG BspLU11III restriction-modification system from the thermophilic strain Bacillus sp. LU11 were expressed in E. coli. They contain a large number of codons that are rare in E. coli and are characterized by equal values of codon adaptation index (CAI) and expression level measure (E(g)). Rare codons are either diffused (M.BspLU11IIIa) or located in clusters (M.BspLU11IIIb). The expression level of the cytosine-specific DNA-methyltransferase was increased by a factor of 7.3 and that of adenine-specific DNA only by a factor of 1.25 after introduction of the plasmid pRARE supplying tRNA genes for six rare codons in E. coli. It can be assumed that the plasmid supplying minor tRNAs can strongly increase the expression level of only genes with cluster distribution of rare codons. Using heparin-Sepharose and phosphocellulose chromatography and gel filtration on Sephadex G-75 both DNA-methyltransferases were isolated as electrophoretically homogeneous proteins (according to the results of SDS-PAGE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号