首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rami Kfir 《BioControl》1983,28(4):345-353
The effect of host density on parasitism byTrichogramma pretiosum Riley was studied by exposing groups of 150, 300, 600 or 1200 eggs of potato tuber moth to 2, 4 or 8 female parasites per group. The parasite exhibited a type 2 functional response. As host density increasedT. pretiosum parasitised more hosts, but at a decreasing rate. The attack coefficient (a′) decreased as parasite density increased, whereas the handling time (T h ) remained almost constant. The search rate (a) decreased with increasing host density.T. pretiosum responded to increasing host density by increasing the number of its encounters with hosts and the number of hosts it parasitised only up to host density of 300 when the parasite density was 2 and up to host density of 600 when the parasite densities were greater and then remained almost constant. The observed incidence of parasitism was higher than that expected on the assumption that the parasites behaved the same at higher host densities as at the lowest. When parasite density was raised from 2 to 8 females per group the percentage of female progeny fell from about 73 to about 48%. A 2-fold increase in the number of female progeny was observed when parasite density was reduced from 8 to 2 and also when the host density was raised from 150 to 1200 eggs.  相似文献   

2.
Summary Three species ofAphytis parasites of California red scale,Aonidiella aurantii (Maskell) were each confined at different densities with approximately equal numbers of scale insects at several constant temperatures to determine the effect of these factors on progeny production and distribution and the search rate. Egg location on the host body by the parasites was unaffected by temperature or parasite density.A. melinus laid its eggs both dorsally and ventrally in equal proportions whileA. lingnanensis andA. chrysomphali laid their eggs ventrally. Progeny production byA. melinus andA. lingnanensis increased at the higher temperature; that ofA. chrysomphali did not. Unlike the other species,A. chrysomphali failed to oviposit at 32°C. Although increasing parasite density reduced progeny production in bothA. melinus andA. lingnanensis, they were able to maintain an almonst constant search rate. This was due to their ability to distribute their eggs among the hosts more regularly at the higher parasite densities. While the mechanism of this process is easy to understand forA. melinus which behaved as a gregarious parasite, it is unclear forA. lingnanensis, which is almost a solitary parasite. The progeny production and the search rate ofA. chrysomphali dropped significantly with increasing parasite density.  相似文献   

3.
Summary The effects of temperature on growth and development of the cabbage butterfly, Pieris rapae, and three wasp parasites: Apanteles rubecula, Apanteles glomeratus and Pteromalus puparum in Vancouver, Canada, and Canberra, Australia, are examined. We compare the estimates of temperature threshold for development and the number of degree-days above this threshold required to complete development for the immature stages of all species in both localities. Developmental patterns of both the host and its parasites differ between localities. Within the range of temperatures likely to be experienced during the host's breeding season, Australian parasites have longer generation times than their host at low temperatures and shorter generation times at high temperatures. Canadian parasites have shorter generation times, relative to the host, at all temperatures. This may be necessitated by the shorter breeding season available to the Canadian parasites.Besides temperature, parasite development is affected by host size and, in the gregarious species, parasite density. Host larval development is retarded by both Apanteles.All parasites are smaller at higher temperatures and males are smaller than females, but size is also affected by host size and parasite density.Although parasite size, and consequently fecundity, varies greatly, parasites experiencing similar temperatures will have closely similar developmental periods. The ecological significance of these developmental responses is discussed.  相似文献   

4.
A statistical and graphic study is presented of the wastage of eggs by Venturia (=Nemeritis) canescens when searching singly and in groups of 10 among hosts at four different host densities in laboratory universes as described byHuffaker andMatsumoto (preceding paper of this journal). The host insect was the fluour moth Anagasta kühniella and the host densities used were 10, 30, 100 and 200 per universe. Intensity of egg wastage due to superparasitim varied significantly according to host density, and between the two parasite densities employed, 1 and 10, using both F-tests and chi-square tests. Plots of k-factor analysis on this egg wastage showed high negative correlations with host density, and the raw data for single parasites was well represented by a parabola while that for the grouped parasites departed from this relationship only at the lowest host density.  相似文献   

5.
1. Recently, the potential for parasites to influence the ecology and evolution of their zooplankton hosts has been the subject of increasing study. However, most research to date has focussed on Daphnia hosts, and the potential for parasites to influence other zooplankton taxa remains largely unstudied. 2. During routine sampling of zooplankton in a eutrophic lake, we observed that the rotifer Asplanchna girodi was often infected with a parasitic oomycete. Epidemics of this parasite occurred frequently, with three separate events in a single year. Prevalence at peak infection ranged from 29 to 41% and epidemics lasted from 17 to 56 days. Our data indicate that high densities of the host population are required for epidemics to occur. 3. Our morphological and molecular analyses suggest that this parasite is in the genus Pythium. Most Pythium spp. are plant pathogens, but our study supports recent work on Daphnia, suggesting that Pythium spp. are also important parasites of zooplankton. 4. As the parasite in this study was recalcitrant to cultivation, we developed an alternative method to verify its identity. Our approach used quantitative PCR to show that the ribosomal sequences identified increased with increasing density of infected hosts and, thus, were associated with the parasite. This approach should be generally applicable to other plankton parasites that are difficult to cultivate outside their hosts. 5. Infections significantly reduced host fecundity, lifespan and population growth rate. As a result of the virulence of this parasite, it is likely to influence the population ecology and evolution of its Asplanchna host, and may be a useful model system for studies on host–parasite coevolutionary dynamics.  相似文献   

6.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

7.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

8.
We studied egg‐pecking behaviour in males and females of three cowbird species: the shiny cowbird (Molothrus bonariensis), a host generalist brood parasite, the screaming cowbird (M. rufoaxillaris), a host specialist brood parasite, and the bay‐winged cowbird (Agelaioides badius), a non‐parasitic species. We conducted three experiments in which we offered each bird an artificial nest with two plaster eggs and recorded whether egg pecking occurred and the number of pecks on each egg. In expt 1, we tested if there were species and sex differences in egg‐pecking behaviour by offering the birds two spotted eggs of similar pattern. Shiny and screaming cowbirds responded in 40.3% and 44% of the trials, respectively, with females and males presenting similar levels of response. In contrast, bay‐winged cowbirds did not show any response. In expt 2, we tested if shiny cowbirds responded differentially when they faced a choice between one host and one shiny cowbird egg, while in expt 3, we tested if screaming cowbirds responded differentially when they faced a choice between one shiny and one screaming cowbird egg. Shiny cowbirds pecked preferentially host eggs while screaming cowbirds pecked more frequently shiny cowbird eggs. Our results show that egg‐pecking behaviour is present in both sexes of parasitic cowbirds, but not in non‐parasitic birds, and that parasitic cowbirds can discriminate between eggs of their own species and the eggs of their hosts or other brood parasites.  相似文献   

9.
We investigated whether a parasite with two routes of transmission responds to the different transmission opportunities offered by male and female hosts by using different transmission strategies in the two sexes. The parasite Ascogregarina culicis, which infects the mosquito Aedes aegypti, can be transmitted as its host’s pupa transforms into an adult or when a female lays its eggs. As the latter transmission route is missing in males, we expected, and found, that the parasite releases a greater proportion of its infectious forms during emergence when it is within a male than when it infects a female. The transmission route, which influences the parasite’s dispersal and the evolution of its virulence, was also affected by the dose of infection and the parasite’s previous transmission route. Our results emphasize the complexity underlying the development of parasites and show their ability to tune their strategy to their environment.  相似文献   

10.
Individual hosts constitute a limited resource for parasites, suggesting that density-dependent effects may play a role in within-host growth and parasite regulation. This hypothesis has been tested for several helminth parasites, but not for microparasites. We therefore examined dose-response patterns for the microparasitic bacterium Pasteuria ramosa and the fungus Metschnikowiella biscuspidata infecting the planktonic crustacean Daphnia magna. With increasing numbers of transmission stages administered to the host we found that host fecundity and survival and parasite transmission-stage production declined. Using a k-value analysis, a method that quantifies the strength of density dependence, we found for both parasites that density dependence acted at all doses, indicating the absence of a minimum density below which parasite fitness is density- independent. At low doses density was exactly compensated, but it was overcompensated at high doses. Overcompensation at high doses was weak for P. ramosa, but high for M. biscuspidata. At the two highest doses M. biscuspidata killed its hosts before any transmission stages were produced. Our data indicate that density dependence is expressed through retarded spore development in P. ramosa, but through both host mortality and reduced parasite fecundity in M. biscuspidata. A further experiment (P. ramosa only) revealed that in well-fed hosts more parasite transmission stages are produced than in poorly fed hosts, suggesting that competition for host resources retards P. ramosa development. Our data for P. ramosa, but not for M. biscuspidata, are largely consistent with assumptions made in models on microparasite epidemiology. We draw attention to the relevance of dose effects and within-host competition for the evolution of virulence. Received: 15 July 1999 / Accepted: 14 September 1999  相似文献   

11.
Abstract.
  • 1 The ability to use flexible decision rules can be an advantage to parasitoid females searching for patchily-distributed hosts. In a series of laboratory experiments the hypothesis that Opius dimidiatus, a solitary parasitoid of the chrysanthemum leafminer (Liriomyza trifolii), adjusts the time she allocates to searching for her larval hosts in response to both patch qualities and experiences with hosts was tested by varying such patch parameters as area, presence of host mines and density of host mines, and by allowing ovipositions and encounters with parasitized hosts.
  • 2 Though leaf area was not a factor, the presence of host mines in a leaf did increase the time a female O.dimidiatus spent searching, over time spent on unmined leaves.
  • 3 When host mine density was increased, females responded by increasing their search period in a density-dependent manner, suggesting a perception of patch quality.
  • 4 Ovipositions in hosts caused females to reset their‘giving-up time’(GUT), or increase search intensity, by adding an amount of search time that increased with each successive oviposition. Conversely, encounters with parasitized (unsuitable) hosts incremented the GUT, but by an amount that decreased with each successive encounter.
  相似文献   

12.
  • 1 Two hyperparasites, Cheiloneurus paralia (Walker) and Marietta exitiosa Compere, of Microterys flavus (Howard), a primary parasite of the brown soft scale Coccus hesperidum L. have been studied.
  • 2 The area of discovery of the hyperparasites for secondary hosts (scale insects) is greater than that of the primary parasite, indicating higher searching efficiency of the secondary parasites.
  • 3 Cheiloneurus has a higher searching efficiency measured as its area of discovery for discovering both the secondary (scale insect) and the primary (Microterys) hosts, as compared with Marietta.
  • 4 The searching efficiency of Cheiloneurus increased in the presence of its own males.
  • 5 In each species there is a non-linear relationship between the searching efficiency and female density.
  • 6 Cheiloneurus and Marietta present two differing searching strategies. Cheiloneurus tends to exploit as many primary hosts as possible in each secondary host encountered, whereas Marietta, tends to disperse its progeny more regularly by avoiding, to a certain extent, the exploitation of more than one host in each scale insect encountered.
  相似文献   

13.
Paralictus asteris Mitchell is a socially parasitic sweat bee that invades nests and becomes the dominant reproductive in colonies of a phylogenetically related host, Lasioglossum (Dialictus) imitatum (Smith). The parasite has a greatly enlarged quadrate head, with elongate scythe-like mandibles, and other morphological modifications apparently associated with a parasitic lifestyle. Nevertheless, the parasite did not forcefully enter nests. Host guards adopted a defensive posture at the nest entrance when they contacted a dead, frozen parasite, suggesting that they recognized the intruders as parasites. Living parasites, however, only sometimes induced this guarding response, while in other cases parasites entered host nests without obvious signs of aggression from the guard. Guards also responded aggressively to both frozen and living conspecifics from other nests, but were not aggressive to living or frozen nest-resident conspecifics, suggesting that the cues used for recognition of both unrelated conspecifics and parasites are chemical ones. More than one parasite can invade and occupy a nest, and successful invasion was not influenced by whether a parasitic female was mated or had developed ovaries.  相似文献   

14.
In theory, parasites can create time-lagged, frequency-dependent selection in their hosts, resulting in oscillatory gene-frequency dynamics in both the host and the parasite (the Red Queen hypothesis). However, oscillatory dynamics have not been observed in natural populations. In the present study, we evaluated the dynamics of asexual clones of a New Zealand snail, Potamopyrgus antipodarum, and its trematode parasites over a five-year period. During the summer of each year, we determined host-clone frequencies in random samples of the snail to track genetic changes in the snail population. Similarly, we monitored changes in the parasite population, focusing on the dominant parasite, Microphallus sp., by calculating the frequency of clones in samples of infected individuals from the same collections. We then compared these results to the results of a computer model that was designed to examine clone frequency dynamics for various levels of parasite virulence. Consistent with these simulations and with ideas regarding dynamic coevolution, parasites responded to common clones in a time-lagged fashion. Finally, in a laboratory experiment, we found that clones that had been rare during the previous five years were significantly less infectible by Microphallus when compared to the common clones. Taken together, these results confirm that rare host genotypes are more likely to escape infection by parasites; they also show that host-parasite interactions produce, in a natural population, some of the dynamics anticipated by the Red Queen hypothesis.  相似文献   

15.
16.
Measurements of body length of cottony-cushion scales,Icerya purchasi Maskell, are presented. Although length increased markedly with developmental stage, the length distributions of successive stages were found to overlap, making length an imperfect indicator of stage andvice versa. The likelihood of parasitism by the fly,Cryptochaetum iceryae (Williston), was found to increase with increasing scale size when scales of different sizes were concurrently made available to the parasites under field conditions. Also, parasite loads (no. of parasites per parasitized host) were found to increase with host size. The size ofC. iceryae pupae was found to depend on the developmental stage of the scale host in which pupation took place — the more developed (larger) the host, the larger the pupa. This result suggests that parasite growth is food limited in the smaller hosts, and that therefore its apparent preference for larger hosts is to the parasite's advantage.   相似文献   

17.

Aim

Identifying barriers that govern parasite community assembly and parasite invasion risk is critical to understand how shifting host ranges impact disease emergence. We studied regional variation in the phylogenetic compositions of bird species and their blood parasites (Plasmodium and Haemoproteus spp.) to identify barriers that shape parasite community assembly.

Location

Australasia and Oceania.

Methods

We used a data set of parasite infections from >10,000 host individuals sampled across 29 bioregions. Hierarchical models and matrix regressions were used to assess the relative influences of interspecies (host community connectivity and local phylogenetic distinctiveness), climate and geographic barriers on parasite local distinctiveness and composition.

Results

Parasites were more locally distinct (co‐occurred with distantly related parasites) when infecting locally distinct hosts, but less distinct (co‐occurred with closely related parasites) in areas with increased host diversity and community connectivity (a proxy for parasite dispersal potential). Turnover and the phylogenetic symmetry of parasite communities were jointly driven by host turnover, climate similarity and geographic distance.

Main conclusions

Interspecies barriers linked to host phylogeny and dispersal shape parasite assembly, perhaps by limiting parasite establishment or local diversification. Infecting hosts that co‐occur with few related species decreases a parasite's likelihood of encountering related competitors, perhaps increasing invasion potential but decreasing diversification opportunity. While climate partially constrains parasite distributions, future host range expansions that spread distinct parasites and diminish barriers to host shifting will likely be key drivers of parasite invasions.  相似文献   

18.
We investigated the role of host sex in parasite transmission and questioned: ‘Is host sex important in influencing the dynamics of infection in free living animal populations?’ We experimentally reduced the helminth community of either males or females in a yellow‐necked mice (Apodemus flavicollis) population using an anthelmintic, in replicated trapping areas, and subsequently monitored the prevalence and intensity of macroparasites in the untreated sex. We focussed on the dominant parasite Heligmosomoides polygyrus and found that reducing parasites in males caused a consistent reduction of parasitic intensity in females, estimated through faecal egg counts, but the removal of parasites in females had no significant influence on the parasites in males. This finding suggests that males are responsible for driving the parasite infection in the host population and females may play a relatively trivial role. The possible mechanisms promoting such patterns are discussed.  相似文献   

19.
The effect of the density of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) on reproductive and host-feeding behaviours of the parasitoid Cephalonomia stephanoderis (Hymenoptera: Bethylidae) was evaluated under laboratory conditions. The number of hosts used for oviposition was density-dependent at low host density. Beyond a density of six hosts/day, the oviposition rate reached a maximum of 1.2 eggs/day due to egg limitation. Cephalonomia stephanoderis females responded to increasing host availability with a linear increase in host feeding. Overall, parasitoids killed more coffee berry borers by feeding and paralysis than by parasitism. At low host density, the pre-oviposition phase was extended, oogenesis was delayed, more males were produced, and host feeding occasionally occurred concurrently with oviposition. We suggest that the efficacy of C. stephanoderis as a biological control agent depends on seasonal variations in host density. Inoculative vs inundative releases in coffee plantations are discussed in relation to the abundance of the coffee berry borer during the fructification and interharvest periods.  相似文献   

20.
We investigated whether sexual segregation might affect parasite transmission and host dynamics, hypothesising that if males are the more heavily infected sex and more responsible for the transmission of parasite infections, female avoidance of males and the space they occupy could reduce infection rates. A mathematical model, simulating the interaction between abomasal parasites and a hypothetical alpine ibex (Capraibex) host population composed of its two sexes, was developed to predict the effect of different degrees of sexual segregation on parasite intensity and on host abundance. The results showed that when females tended to be segregated from males, and males were distributed randomly across space, the impact of parasites was the lowest, resulting in the highest host abundance, with each sex having the lowest parasite intensity. The predicted condition that minimises the impact of parasites in our model was the one closest to that observed in nature where females actively seek out the more segregated sites while males are less selective in their ranging behaviour. The overlapping of field observation with the predicted optimal strategy lends support to our idea that there might be a connection between parasite transmission and sexual segregation. Our simulations provide the biological boundaries of host-parasite interaction needed to determine a parasite-mediated effect on sexual segregation and a formalised null hypothesis against which to test future field experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号