首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The myelin P0 protein is glycosylated at a single site, asparagine 93, within its only immunoglobulin (Ig)-like domain. We have previously shown that P0 behaves like a homophilic adhesion molecule (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.). 344:871-872). To determine if the sugar residues of this molecule contribute to its adhesiveness, the glycosylation site was eliminated by replacing asparagine 93 with an alanine, through site- directed mutagenesis of the P0 cDNA. The mutated P0 cDNA was transfected into CHO cells and surface expression of the mutated P0 was assessed by immunofluorescence, limited trypsinization and an ELISA. A cell line was chosen which expressed approximately equivalent amounts of the unglcosylated P0 (UNGP0) at the cell surface as did a cell line expressing the fully glycosylated P0 (GPo); the adhesive properties of these two cell lines were compared. It was found that when a single cell suspension of the UNGPo cells were incubated, by 60 min, unlike the GP0 cells, they had not formed large aggregates; they were indistinguishable from the control transfected cells. This suggests that the UNGP0 protein does not behave like an adhesion molecule. To establish if only one molecule in the P0:P0 homophilic pair must be glycosylated for adhesion to occur, the ability of UNGP0 cells to adhere to GP0 cells was assessed both qualitatively and quantitatively. The results of both types of assay imply that, indeed, both P0 molecules in the homophilic pair must be glycosylated for adhesion to take place.  相似文献   

3.
Expression of major myelin glycoprotein P0 by P0 cDNA transfection into C6 glioma cells promoted homophilic cell adhesion of the cells. After the dissociated cells were incubated for various times, the number of particles at each time point was measured. The total number of particles decreased to 24% in 60 min for transformant (C6P0) cells, in contrast to only 68% for control (C6P0') cells. To confirm the homophilic mechanism of adhesion, mixed-cell aggregation experiments were performed. Among the four synthetic peptides corresponding to a part of the P0 sequence used, only peptide 3 (residues 90-96), which contained a carbohydrate attaching site, caused considerable inhibition of cell aggregation (approximately 50%). In addition, the glycopeptide (residues 91-95) obtained from bovine P0 markedly inhibited cell aggregation (by approximately 85%).  相似文献   

4.
《The Journal of cell biology》1994,126(4):1089-1097
The extracellular domain of the myelin P0 protein is believed to engage in adhesive interactions and thus hold the myelin membrane compact. We have previously shown that P0 can behave as a homophilic adhesion molecule through interactions of its extracellular domains (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.) 344:871-872). To determine if the cytoplasmic domain of P0 must be intact for the extracellular domains to adhere, we compared the adhesive capabilities of P0 proteins truncated at the COOH-terminal to the full-length P0 protein. P0 cDNAs lacking nucleotides coding for the last 52 or 59 amino acids were transfected into CHO cells, and surface expression of the truncated proteins was assessed by immunofluorescence, surface labeling followed by immunoprecipitation, and an ELISA. Cell lines were chosen that expressed at least equivalent amounts of the truncated P0 proteins at the surface as did a cell line expressing the full-length P0. The adhesive properties of these three cell lines were compared. It was found that when a suspension of single cells was allowed to aggregate for a period of 60 min, only the cells expressing the full-length P0 had formed large aggregates, while the cells expressing the truncated P0 molecules were still mostly single cells indistinguishable from the control cells. Furthermore, 25-30% of the full-length P0 was insoluble in NP40, indicative of an interaction with the cytoskeleton, whereas only 5-10% of P0 lacking 52 amino acids and none of P0 lacking 59 amino acids were insoluble. These results suggest that for the extracellular domain of P0 to behave as a homophilic adhesion molecule, its cytoplasmic domain must be intact, and most probably, it is interacting with the cytoskeleton.  相似文献   

5.
P0, the most abundant glycoprotein of PNS myelin, is a homophilic and heterophilic adhesion molecule. P0 is known to contain a glycoform population that expresses the L2/HNK-1 carbohydrate epitope found on other neural adhesion molecules, and to be functionally implicated centrally in neural cell adhesion and neurite outgrowth. This carbohydrate epitope has been characterized previously from glycolipid structures and contains a sulphated glucuronic acid residue. However, the L2/HNK-1 carbohydrate epitope has not been characterized in glycoproteins. Because P0 possesses only one glycosylation sequon, the number of P0 glycoforms is equal to the heterogeneity of the glycan species. Here we report that the carbohydrate analysis of L2/HNK-1-reactive P0 showed the presence of anionic structures containing sialic acid and sulphate in various combinations. At least one sulphate residue was present in 80% of the monosaccharide sequences, and 20% contained three sulphates. High-resolution P4 gel chromatography of the desialylated and desulphated oligosaccharides showed substantial heterogeneity of monosaccharide sequences. Sequential exoglycosidase digestions indicated that the majority of the structures were of the hybrid class, although the sulphated structures were found to be endoglycosidase H-resistant.  相似文献   

6.
Fasciclin I is a membrane-associated glycoprotein that is regionally expressed on a subset of fasciculating axons during neuronal development in insects; it is expressed on apposing cell surfaces, suggesting a role in specific cell adhesion. In this paper we show that Drosophila fasciclin I is a novel homophilic cell adhesion molecule. When the nonadhesive Drosophila S2 cells are transfected with the fasciclin I cDNA, they form aggregates that are blocked by antisera against fasciclin I. When cells expressing fasciclin I are mixed with cells expressing fasciclin III, another Drosophila homophilic adhesion molecule, the mixture sorts into aggregates homogeneous for either fasciclin I- or fasciclin III-expressing cells. The ability of these two novel adhesion molecules to mediate cell sorting in vitro suggests that they might play a similar role during neuronal development.  相似文献   

7.
Fasciclin I is a homophilic neural cell adhesion molecule which is regionally expressed on a subset of fasciculating axons in both the grasshopper and Drosophila embryo, suggesting a role in axonal recognition. It is also dynamically expressed on a variety of other embryonic tissues. Biochemical analysis of the fasciclin I glycoprotein from Drosophila embryonic membranes and Schneider 1 cells indicates that it is tightly associated with the lipid bilayer by a phosphatidylinositol lipid moiety. In Drosophila embryos a large fraction of fasciclin I protein has lost its membrane anchor. The ratio of this soluble form to the phosphatidylinositol-linked form changes during embryogenesis. We speculate that removal of the phosphatidylinositol lipid from the fasciclin I protein could be a mechanism to regulate its adhesive function.  相似文献   

8.
P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of X. laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0's putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0's adhesion role and the role of its acylation in compact PNS myelin.  相似文献   

9.
The single oligosaccharide moiety of the major myelin glycoprotein, P0, resides in an immunoglobulin-like domain that appears to participate in homophilic binding. The studies presented here indicate that the structure of the P0 oligosaccharide from rat nerve changes as a function of Schwann cell age. Examination of 5-day-old nerve revealed that P0 contained predominantly endo-beta-N-acetylglucosaminidase H (endo H)-resistant, complex-type oligosaccharide. In contrast, P0 from adult rats had mostly endo H-sensitive carbohydrate, indicating the presence of appreciable high-mannose and/or hybrid-type oligosaccharide on the glycoprotein. The endo H-sensitive and -resistant P0 of adult nerve could be readily phosphorylated by protein kinase C, as could the complex-type P0 from 5-day-old nerve. This suggests that the glycoprotein progresses to the plasma membrane and myelin regardless of the type of oligosaccharide chain. Analysis of 35SO4(2-)-labeled P0 showed that the sulfate group was found on both endo H-sensitive and -resistant oligosaccharide. The endo H-sensitive P0 carbohydrate from adult nerve appears to be primarily of the hybrid type, as evidenced by (a) the elution profile of [3H]mannose-labeled P0 glycopeptides from adult nerve during concanavalin A chromatography and (b) the inability of P0 from adult nerve to interact with Galanthus nivalis agglutinin. The observed age-dependent changes of P0 oligosaccharide may modify the binding properties of this myelin glycoprotein.  相似文献   

10.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   

11.
Mutations in P0 (MPZ), the major myelin protein of the peripheral nervous system, cause the inherited demyelinating neuropathy Charcot-Marie-Tooth disease type 1B. P0 is a member of the immunoglobulin superfamily and functions as a homophilic adhesion molecule. We now show that point mutations in the cytoplasmic domain that modify a PKC target motif (RSTK) or an adjacent serine residue abolish P0 adhesion function and can cause peripheral neuropathy in humans. Consistent with these data, PKCalpha along with the PKC binding protein RACK1 are immunoprecipitated with wild-type P0, and inhibition of PKC activity abolishes P0-mediated adhesion. Point mutations in the RSTK target site that abolish adhesion do not alter the association of PKC with P0; however, deletion of a 14 amino acid region, which includes the RSTK motif, does abolish the association. Thus, the interaction of PKCalpha with the cytoplasmic domain of P0 is independent of specific target residues but is dependent on a nearby sequence. We conclude that PKC-mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is necessary for P0-mediated adhesion, and alteration of this process can cause demyelinating neuropathy in humans.  相似文献   

12.
Two major glycoproteins, P0 and PASII/PMP22, are specifically expressed in peripheral myelin. Point mutations of these proteins and over or under expression of PASII/PMP22 cause various hereditary peripheral neuropathies. P0 is well characterized as a major adhesion molecule in PNS myelin, but the function of PASII/PMP22 is still unknown. Recently, an oligodendrocyte-specific protein (OSP) was identified as a member of the claudin family and as a component of tight junctions of central myelins. Since PASII/PMP22 shows similarity in structure to OSP, which is a tetraspan membrane protein, we speculated if PASII/PMP22 could be a member of claudin superfamily. The primary structure of PASII/PMP22 showed a significant homology of 48% and a 21% identity with the OSP sequence. Exogenous expression of PASII/PMP22 in C6 cells significantly inhibited BrdU incorporation to the cells. The C6 cells stably transfected with PASII/PMP22 cDNA showed no homophilic cell adhesive activity. When dorsal root ganglion (DRG) neurons were cocultured on PASII/PMP22 expressing cells, both neurite extension and branching of DRG neurons were significantly inhibited. These results indicate that PASII/PMP22 may play a role in a turning point of Schwann cell development from proliferation to differentiation. On the other hand, the cells expressing claudin family proteins are reported to show strong cell adhesive activity and an ability to form tight junctions with neighboring cells. For this reason, we currently do not have any functional data supporting that PASII/PMP22 is the member of claudin superfamily.  相似文献   

13.
The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most abundant constituent of myelin. Using monoclonal antibodies, the homophilic binding of the P0 glycoprotein was shown to be mediated via the human natural keller cell (HNK)-1 epitope (3-O-SO(3)H-GlcUA(beta1-3)Gal(beta1-4)GlcNAc) present on the N-glycans. We recently described the structure of the N-glycan carrying the HNK-1 epitope, present on bovine peripheral myelin P0 (Voshol, H., van Zuylen, C. W. E. M., Orberger, G., Vliegenthart, J. F. G., and Schachner, M. (1996) J. Biol. Chem. 271, 22957-22960). In this study, we report on the structural characterization of the detectable glycoforms, present on the single N-glycosylation site, using state-of-the-art NMR and mass spectrometry techniques. Even though all structures belong to the hybrid- or biantennary complex-type structures, the variety of epitopes is remarkable. In addition to the 3-O-sulfate present on the HNK-1-carrying structures, most of the glycans contain a 6-O-sulfated N-acetylglucosamine residue. This indicates the activity of a 6-O-sulfo-GlcNAc-transferase, which has not been described before in peripheral nervous tissue. The presence of the disialo-, galactosyl-, and 6-O-sulfosialyl-Lewis X epitopes provides evidence for glycosyltransferase activities not detected until now. The finding of such an epitope diversity triggers questions related to their function and whether events, previously attributed merely to the HNK-1 epitope, could be mediated by the structures described here.  相似文献   

14.
Abstract: It is widely accepted, although never demonstrated, that the formation of a disulfide bond in the majority of immunoglobulin (Ig)-like domains stabilizes their final conformation and thus is essential to their functioning as adhesion/recognition molecules. The myelin P0 protein, which has been shown directly to behave as a homophilic adhesion molecule, contains a single Ig-like domain, stabilized by a putative Cys21-Cys98 disulfide bond. To test if this bond is indeed necessary to the adhesive function of P0, the nucleotides in the P0 cDNA coding for Cys21 were altered to code for an alanine. The mutated P0 cDNA was transfected into Chinese hamster ovary cells, expression of the mutated P0 protein was characterized, and the adhesiveness of Cys21-mutated P0-expressing cells and that of cells expressing equivalent surface amounts of the unmutated protein were compared. It was found, as we previously reported, that incubation of a single cell suspension of the unmutated P0-expressing cells resulted in the rapid formation of large aggregates. In contrast, after a similar incubation the cells expressing the Cys21-mutated P0 were still mostly single cells, a result indistinguishable from that observed with the control transfected cells. This suggests that the P0 protein, when mutated at Cys21, does not behave as a homophilic adhesion molecule, which in turn implies that the formation of an Ig domain disulfide bond is essential to the functioning of this molecule.  相似文献   

15.
The L1 cell adhesion molecule promotes neurite outgrowth and neuronal survival in homophilic and heterophilic interactions and enhances neurite outgrowth and neuronal survival homophilically, i.e. by self binding. We investigated whether exploitation of homophilic and possibly also heterophilic mechanisms of neural stem cells overexpressing the full-length transmembrane L1 and a secreted trimer engineered to express its extracellular domain would be more beneficial for functional recovery of the compression injured spinal cord of adult mice than stem cells overexpressing only full-length L1 or the parental, non-engineered cells. Here we report that stem cells expressing trimeric and full-length L1 are indeed more efficient in promoting locomotor recovery when compared to stem cells overexpressing only full-length L1 or the parental stem cells. The trimer expressing stem cells were also more efficient in reducing glial scar volume and expression of chondroitin sulfates and the chondroitin sulfate proteoglycan NG2. They were also more efficient in enhancing regrowth/sprouting and/or preservation of serotonergic axons, and remyelination and/or myelin sparing. Moreover, degeneration/dying back of corticospinal cord axons was prevented more by the trimer expressing stem cells. These results encourage the view that stem cells engineered to drive the beneficial functions of L1 via homophilic and heterophilic interactions are functionally optimized and may thus be of therapeutic value.  相似文献   

16.
Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte beta(2)-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4-5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5-expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes.  相似文献   

17.
Fasciclin III: a novel homophilic adhesion molecule in Drosophila   总被引:16,自引:0,他引:16  
P M Snow  A J Bieber  C S Goodman 《Cell》1989,59(2):313-323
Drosophila fasciclin III is an integral membrane glycoprotein that is expressed on a subset of neurons and fasciculating axons in the developing CNS, as well as in several other tissues during development. Here we report on the isolation of a full-length cDNA encoding an 80 kd form of fasciclin III. We have used this cDNA, under heat shock control, to transfect the relatively nonadhesive Drosophila S2 cell line. Examination of these transfected cells indicates that fasciclin III is capable of mediating adhesion in a homophilic, Ca2+-independent manner. Sequence analysis reveals that fasciclin III encodes a transmembrane protein with no significant homology to any known protein, including the previously characterized families of vertebrate cell adhesion molecules. The distribution of this adhesion molecule on subsets of fasciculating axons and growth cones during Drosophila development suggests that fasciclin III plays a role in growth cone guidance.  相似文献   

18.
Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.  相似文献   

19.
Drosophila neurotactin mediates heterophilic cell adhesion.   总被引:3,自引:2,他引:1       下载免费PDF全文
Neurotactin is a 135 kd membrane glycoprotein which consists of a core protein, with an apparent molecular weight of 120 kd, and of N-linked oligosaccharides. In vivo, the protein can be phosphorylated in presence of radioactive orthophosphate. Neurotactin expression in the larval CNS and in primary embryonic cell cultures suggests that it behaves as a contact molecule between neurons or epithelial cells. Electron microscopy studies reveal that neurotactin is uniformly expressed along the areas of contacts between cells, without, however, being restricted to a particular type of junction. It putative adhesive properties have been tested by transfecting non adhesive Drosophila S2 cells with neurotactin cDNA. Heat shocked transfected cells do not aggregate, suggesting that neurotactin does not mediate homophilic cell adhesion. However, these transfected cells bind to a subpopulation of embryonic cells which probably possess a related ligand. The location at cellular junctions between specific neurons or epithelial cells, the heterophilic binding to a putative ligand and the ability to be phosphorylated are consistent with the suggestion that neurotactin functions as an adhesion molecule.  相似文献   

20.
Protein zero (P(o)) is the immunoglobulin gene superfamily glycoprotein that mediates the self-adhesion of the Schwann cell plasma membrane that yields compact myelin. HeLa is a poorly differentiated carcinoma cell line that has lost characteristic morphological features of the cervical epithelium from which it originated. Normally, HeLa cells are not self-adherent. However, when P(o) is artificially expressed in this line, cells rapidly aggregate, and P(o) concentrates specifically at cell-cell contact sites. Rows of desmosomes are generated at these interfaces, the plasma membrane localization of cingulin and ZO-1, proteins that have been shown to be associated with tight junctions, is substantially increased, and cytokeratins coalesce into a cohesive intracellular network. Immunofluorescence patterns for the adherens junction proteins N-cadherin, alpha-catenin, and vinculin, and the desmosomal polypeptides desmoplakin, desmocollin, and desmoglein, are also markedly enhanced at the cell surface. Our data demonstrate that obligatory cell-cell adhesion, which in this case is initially brought about by the homophilic association of P(o) molecules across the intercellular cleft, triggers pronounced augmentation of the normally sluggish or sub-basal cell adhesion program in HeLa cells, culminating in suppression of the transformed state and reversion of the monolayer to an epithelioid phenotype. Furthermore, this response is apparently accompanied by an increase in mRNA and protein levels for desmoplakin and N-cadherin which are normally associated with epithelial junctions. Our conclusions are supported by analyses of ten proteins we examined immunochemically (P(o), cingulin, ZO-1, desmoplakin, desmoglein, desmocollin, N-cadherin, alpha-catenin, vinculin, and cytokeratin-18), and by quantitative polymerase chain reactions to measure relative amounts of desmoplakin and N-cadherin mRNAs. P(o) has no known signaling properties; the dramatic phenotypic changes we observed are highly likely to have developed in direct response to P(o)-induced cell adhesion. More generally, the ability of this "foreign" membrane adhesion protein to stimulate desmosome and adherens junction formation by augmenting well-studied cadherin-based adhesion mechanisms raises the possibility that perhaps any bona fide cell adhesion molecule, when functionally expressed, can engage common intracellular pathways and trigger reversion of a carcinoma to an epithelial-like phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号