首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Mutational analyses have suggested that BK channels are regulated by three distinct divalent cation-dependent regulatory mechanisms arising from the cytosolic COOH terminus of the pore-forming alpha subunit. Two mechanisms account for physiological regulation of BK channels by microM Ca2+. The third may mediate physiological regulation by mM Mg2+. Mutation of five aspartate residues (5D5N) within the so-called Ca2+ bowl removes a portion of a higher affinity Ca2+ dependence, while mutation of D362A/D367A in the first RCK domain also removes some higher affinity Ca2+ dependence. Together, 5D5N and D362A/D367A remove all effects of Ca2+ up through 1 mM while E399A removes a portion of low affinity regulation by Ca2+/Mg2+. If each proposed regulatory effect involves a distinct divalent cation binding site, the divalent cation selectivity of the actual site that defines each mechanism might differ. By examination of the ability of various divalent cations to activate currents in constructs with mutationally altered regulatory mechanisms, here we show that each putative regulatory mechanism exhibits a unique sensitivity to divalent cations. Regulation mediated by the Ca2+ bowl can be activated by Ca2+ and Sr2+, while regulation defined by D362/D367 can be activated by Ca2+, Sr2+, and Cd2+. Mn2+, Co2+, and Ni2+ produce little observable effect through the high affinity regulatory mechanisms, while all six divalent cations enhance activation through the low affinity mechanism defined by residue E399. Furthermore, each type of mutation affects kinetic properties of BK channels in distinct ways. The Ca2+ bowl mainly accelerates activation of BK channels at low [Ca2+], while the D362/D367-related high affinity site influences both activation and deactivation over the range of 10-300 microM Ca2+. The major kinetic effect of the E399-related low affinity mechanism is to slow deactivation at mM Mg2+ or Ca2+. The results support the view that three distinct divalent-cation binding sites mediate regulation of BK channels.  相似文献   

2.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

3.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

4.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

5.
In earlier studies of genetic competence in Escherichia coli induced with calcium-containing buffers, a strong correlation was found between transformation efficiency and the formation of poly-beta-hydroxybutyrate/calcium polyphosphate (PHB/Ca2+/PPi) complexes in the plasma membranes. In this study, we replaced Ca2+ with one of a number of other cations--monovalent, divalent, and trivalent--and found significant numbers of transformants (transformation efficiency, > 10(5)/micrograms of pBR322 DNA) only when the cells had high levels of PHB/Ca2+/PPi and the medium contained at least one of the divalent cations Ca2+, Mn2+, Sr2+, or Mg2+. Cells with high levels of the complexes were not competent when the medium did not contain these cations, but the cations were also ineffectual when the cells had few complexes. Surprisingly, Mn, Sr, and Mg were not incorporated into the complexes in place of Ca. These results indicate that PHB/Ca2+/PPi complexes and the above-mentioned divalent cations each have essential but disparate roles in genetic competence. Moreover, the strong selectivity of PHB/PPi for Ca2+ suggests the binding sites in the complexes are ionophoretic.  相似文献   

6.
Although the addition of various divalent metals to beta-galactosidase resulted in apparent activation, only Mg2+ and Mn2+ actually did activate. The apparent activation by the other divalent metals was shown to be due to Mg2+ impurities. Calcium did not activate, but experiments suggested that it did bind. Other divalent metals which were studied failed to bind. The dissociation constants for Mg2+ and Mn2+ were 2.8 X 10(-7) and 1.1 X 10(-8) M, respectively, and in each case one ion bound per monomer. These constants corresponded very closely to apparent values which were obtained from activation studies. The apparent binding constant for Ca2+, obtained from competition studies, was 1.5 X 10(-5) M. Data were obtained which showed that Mg2+, Mn2+, and Ca2+ all compete for binding at a single site. Of interest and of possible molecular biological importance was the observation that, while Mg2+ bound noncooperatively (n = 1.0), Mn2+ did so in a highly cooperative manner (n = 3.4). The binding of Mn2+ (as compared to Mg2+) resulted in a twofold drop in the Vmax for the hydrolysis and transgalactosylis reactions of lactose but had little effect on the Vmax of hydrolysis of allolactose, p-nitrophenyl beta-D-galactopyranoside (PNPG), or o-nitrophenyl beta-D-galactopyranoside (ONPG); Km values were not effected differently for any of the substrates by Mn2+ as compared to Mg2+. When very low levels of divalent metal ions were present (0.01 M EDTA added) or when Ca2+ was bound with lactose as the substrate, a greater decrease was observed in the rate of the transgalactosylic reaction than in the rate of the hydrolytic reaction, and the Km values for lactose and ONPG were increased. Of the three divalent metal ions which bound to beta-galactosidase, only Mn2+ had significant stabilizing effects toward denaturing urea and heat conditions.  相似文献   

7.
Y Ozaki  Y Yatomi  S Kume 《Cell calcium》1992,13(1):19-27
Divalent ion mobilization in human platelets was evaluated with Fura-2 fluorescence changes induced by Ca2+, Sr2+, Ba2+ and Mn2+. Extracellular Ca2+, Sr2+ and Ba2+ all entered thrombin-stimulated platelets. These divalent ions were also able to refill the intracellular Ca2+ storage sites which had been depleted of Ca2+ by ionomycin treatment, and were released from the storage sites upon thrombin stimulation. However, only the refilling of the storage sites with Ca2+ and Sr2+, but not with Ba2+, were capable of suppressing the opening state of Ca2+ channels assessed with Mn2+ influx. Efflux of intracellularly accumulated divalent ions was observed with Ca2+ and Sr2+ but not with Ba2+. These findings indicate that there are subtle differences in the Ca(2+)-binding domains of the various systems involved in Ca2+ mobilization in platelets, some of which discriminate Ba2+ while accepting Sr2+.  相似文献   

8.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

9.
Sphingomyelinase (SMase) from Bacillus cereus (Bc-SMase) hydrolyzes sphingomyelin to phosphocholine and ceramide in a divalent metal ion-dependent manner. Bc-SMase is a homologue of mammalian neutral SMase (nSMase) and mimics the actions of the endogenous mammalian nSMase in causing differentiation, development, aging, and apoptosis. Thus Bc-SMase may be a good model for the poorly characterized mammalian nSMase. The metal ion activation of sphingomyelinase activity of Bc-SMase was in the order Co2+ > or = Mn2+ > or = Mg2+ > Ca2+ > or = Sr2+. The first crystal structures of Bc-SMase bound to Co2+, Mg2+, or Ca2+ were determined. The water-bridged double divalent metal ions at the center of the cleft in both the Co2+- and Mg2+-bound forms were concluded to be the catalytic architecture required for sphingomyelinase activity. In contrast, the architecture of Ca2+ binding at the site showed only one binding site. A further single metal-binding site exists at one side edge of the cleft. Based on the highly conserved nature of the residues of the binding sites, the crystal structure of Bc-SMase with bound Mg2+ or Co2+ may provide a common structural framework applicable to phosphohydrolases belonging to the DNase I-like folding superfamily. In addition, the structural features and site-directed mutagenesis suggest that the specific beta-hairpin with the aromatic amino acid residues participates in binding to the membrane-bound sphingomyelin substrate.  相似文献   

10.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

11.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

12.
1. The binding of Ca2+ to plasma coagulation Factor XIII from man and from cow caused a small decrease in the intrinsic fluorescence of the protein with a dissociation constant of 0.1 mM. A similar decrease was observed with the thrombin-activated Factors (Factors XIIa). The decrease in protein fluorescence was also caused by both Ni2+ and Mn2+ but not by Mg2+. 2. 45Ca2+ binding was directly demonstrated by equilibrium dialysis. Ca2+ at 0.2 mM bound to Factor XIII (a2b2) and Factor XIIIa (a'2b2) but not to isolated b2-protein. A tight-binding site for Ca2+ is associated with the a-subunits. 3. The Ca2+ essential for the enzyme activity of Factor XIII from man, pig and cow can be replaced by Ni2+, Cu2+, La3+, Mn2+, Fe3+, Y3+, Co2+, Sr2+ or Tb3+, but not by Mg2+.  相似文献   

13.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

14.
The activation of native human plasminogen (Glu1-Pg) by tissue plasminogen activator, urinary plasminogen activator (u-PA), and streptokinase is inhibited by the divalent cations Ca2+, Mg2+, and Mn2+. This inhibition is accompanied by a conformational change in the molecule as evidenced by a decrease in Stokes' radius and intrinsic fluorescence. Kinetic analysis indicates that Mn2+ acts as an uncompetitive inhibitor of u-PA-catalyzed Glu1-Pg activation. In contrast to the inhibitory effects of divalent cations on Glu1-Pg, Ca2+ and Mg2+ stimulate the activation of proteolytically modified Lys77-Pg. These observations provide further evidence that Glu1-Pg and Lys77-Pg exhibit differential responses to ligands in the microenvironment.  相似文献   

15.
Calcineurin purified from bovine brain was found to be active towards beta-naphthyl phosphate greater than p-nitrophenyl phosphate greater than alpha-naphthyl phosphate much greater than phosphotyrosine. In its native state, calcineurin shows little activity. It requires the synergistic action of Ca2+, calmodulin, and Mg2+ for maximum activation. Ca2+ and Ca2+ X calmodulin exert their activating effects by transforming the enzyme into a potentially active form which requires Mg2+ to express the full activity. Ni2+, Mn2+, and Co2+, but not Ca2+ or Zn2+, can substitute for Mg2+. The pH optimum, and the Vm and Km values of the phosphatase reaction are characteristics of the divalent cation cofactor. Ca2+ plus calmodulin increases the Vm in the presence of a given divalent cation, but has little effect on the Km for p-nitrophenyl phosphate. The activating effects of Mg2+ are different from those of the transition metal ions in terms of effects on Km, Vm, pH optimum of the phosphatase reaction and their affinity for calcineurin. Based on the Vm values determined in their respective optimum conditions, the order of effectiveness is: Mg2+ greater than or equal to Ni2+ greater than Mn2+ much greater than Co2+. The catalytic properties of calcineurin are markedly similar to those of p-nitrophenyl phosphatase activity associated with protein phosphatase 3C and with its catalytic subunit of Mr = 35,000, suggesting that there are common features in the catalytic sites of these two different classes of phosphatase.  相似文献   

16.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

17.
The half-life of activated protein C (APC) was 31 min in citrated blood and 18 min in whole blood. Immunoblotting analysis of citrated blood identified APC-protein C inhibitor (APC-PCI) and APC-alpha 1-antitrypsin complexes. Whole blood contained two additional APC-inhibitor complexes, one stimulated by Ca2+ and another by Mg2+. The former was identified as APC-alpha 2-macroglobulin (APC-alpha 2M) while the latter was not identified. APC-alpha 2-antiplasmin complexes (APC-alpha 2AP) were identified, comigrating with APC-PCI complexes. Purified alpha 2M and alpha 2AP inhibited APC in the presence of Ca2+ (k2 = 99 and 100 M-1 S-1, respectively. Inhibition of APC and Factor Xa by alpha 2M and inhibition of APC by alpha 2AP was stimulated by Ca2+, Mn2+, and Mg2+. Inhibition of thrombin by alpha 2M and of plasmin by alpha 2AP was not altered by EDTA or Ca2+, suggesting divalent metal ions affect APC and Factor Xa rather than the inhibitors. k2 values for the APC inhibitors and their plasma concentrations suggest that PCI and alpha 1-antitrypsin are the more important APC inhibitors and that alpha 2M and alpha 2AP are metal ion-dependent auxiliary inhibitors. Inhibitors can account for the in vivo half-life of APC.  相似文献   

18.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

19.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

20.
The integrin lymphocyte function-associated antigen-1 (LFA-1) expressed on T cells serves as a useful model for analysis of leukocyte integrin functional activity. We have assessed the role of divalent cations Mg2+, Ca2+, and Mn2+ in LFA-1 binding to ligand intercellular adhesion molecule-1 (ICAM-1) and induction of the divalent cation-dependent epitope recognized by mAb 24. Manganese strongly promoted both expression of the 24 epitope and T cell binding to ICAM-1 via LFA-1, suggesting that Mn2+ is able to directly alter the conformation of LFA-1 in a manner that favors ligand binding. Since Mn2+ also promotes functional activity of other integrins, parallels in mechanism of ligand binding may span the integrin family. In contrast, induction of 24 epitope expression by Mg2+ required removal of Ca2+ from T cell LFA-1 with EGTA. Furthermore, binding of mAb 24 to T cell LFA-1 in the presence of either Mn2+ or Mg2+ was found to be specifically inhibited by Ca2+, suggestive of a negative regulatory role for Ca2+ in the control of leukocyte integrin function. Analysis of T cell binding to ICAM-1 via LFA-1 in the presence of Mg2+ or Mn2+, confirmed that Ca2+ exerted inhibitory effects upon LFA-1 function. The implication of our findings is that Ca2+ bound with relatively high affinity to LFA-1 may serve to maintain an inactive state. Thus induction of function and 24 epitope expression may occur as a result of displacement of Ca2+ from leukocyte integrins or alternatively, such activators may be able to impose the required conformational change in the presence of bound Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号