首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand binding to heme proteins: relevance of low-temperature data   总被引:8,自引:0,他引:8  
Binding of carbon monoxide to the beta chain of adult human hemoglobin has been studied by flash photolysis over the time range from about 100 ps to seconds and the temperature range from 40 to 300 K. Below about 180 K, binding occurs directly from the pocket (process I) and is nonexponential in time. Above about 180 K, some carbon monoxide molecules escape from the pocket into the protein matrix. Above about 240 K, escape into the solvent becomes measurable. Process I can be observed up to 300 K. The low-temperature data extrapolate smoothly to 300 K, proving that the results obtained below 180 K provide functionally relevant information. The experiments show again that the binding process even at physiological temperatures is regulated by the final binding step at the heme iron and that measurements at high temperatures are not sufficient to fully understand the association process.  相似文献   

2.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

3.
The accessibility of the heme binding site of two apomyoglobins, i.e. tuna and sperm whale apomyoglobin, has been evaluated by quenching the fluorescence of their ANS-conjugates. The quenching pattern obtained by using charged and uncharged quenchers revealed that the heme pocket of tuna apomyoglobin is more accessible than that of sperm whale. Moreover, a larger number of positively charged groups is present in the heme pocket of tuna apomyoglobin as indicated by comparing the extent of quenching produced by iodide and cesium ion. The relaxation time of ANS bound to tuna apomyoglobin is lower than that of the same chromophore bound to sperm whale globin thus indicating that there is some localized flexibility in the tuna globin.  相似文献   

4.
The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75% glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at nu(A0) approximately 1967 cm-1, nu(A1) approximately 1947 cm-1, and nu(A3) approximately 1929 cm-1 between 60 and 300 K. Below 160 K the photodissociated CO rebinds from the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential. Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the heme is fastest for the A0 substate, intermediate for the A1 substate, and slowest for A3. Rebinding between 200 and 300 K displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A substates. The interconversion rates between A1 and A3 are determined from the time when the scaled kinetic traces of the two substates merge. Fluctuations between A1 and A3 are much faster than those between A0 and either A1 or A3, so A1 and A3 appear as one kinetic species in the exchange with A0. The maximum-entropy method is used to extract the distribution of rate coefficients for the interconversion process A0 <--> A1 + A3 from the flash photolysis data. The temperature dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to describe relaxation processes in glasses. At 300 K the interconversion time for A0 <--> A1 + A3 is 10 microseconds, and extrapolation yields approximately 1 ns for A1 <--> A3. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data support this conclusion: They show that formation of the A0 substate involves a major change of the protein structure; the distal histidine rotates about the C(alpha)-C(beta) bond, and its imidazole sidechain swings out of the heme pocket into the solvent, whereas it remains in the heme pocket in the A1 <--> A3 interconversion. The fast A1 <--> A3 exchange is inconsistent with structural models that involve differences in the protonation between A1 and A3.  相似文献   

5.
Ligand binding to proteins: the binding landscape model.   总被引:4,自引:3,他引:1       下载免费PDF全文
Models of ligand binding are often based on four assumptions: (1) steric fit: that binding is determined mainly by shape complementarity; (2) native binding: that ligands mainly bind to native states; (3) locality: that ligands perturb protein structures mainly at the binding site; and (4) continuity: that small changes in ligand or protein structure lead to small changes in binding affinity. Using a generalization of the 2D HP lattice model, we study ligand binding and explore these assumptions. We first validate the model by showing that it reproduces typical binding behaviors. We observe ligand-induced denaturation, ANS and heme-like binding, and "lock-and-key" and "induced-fit" specific binding behaviors characterized by Michaelis-Menten or more cooperative types of binding isotherms. We then explore cases where the model predicts violations of the standard assumptions. For example, very different binding modes can result from two ligands of identical shape. Ligands can sometimes bind highly denatured states more tightly than native states and yet have Michaelis-Menten isotherms. Even low-population binding to denatured states can cause changes in global stability, hydrogen-exchange rates, and thermal B-factors, contrary to expectations, but in agreement with experiments. We conclude that ligand binding, similar to protein folding, may be better described in terms of energy landscapes than in terms of simpler mass-action models.  相似文献   

6.
The rate constants and delta H degrees for the non-cooperative dimeric Busycon myoglobin are: oxygen, k' = 4.75 X 10(7) M-1 sec-1, k = 71 sec-1, and CO, l'= 3.46 X 10(5) M-1 sec-1, l = 0.0052 sec-1 at 20 degrees C, pH 7, delta H degrees = -3 kcal/mol for O2 and CO.2. Log-log plots of k vs K for oxygen and of l' vs L for CO binding for numerous non-cooperative hemoglobins and myoglobins point to a large steric influence of the protein on heme ligation reactions. Many of the proteins behave as "R" state for one ligand, but "T" for the other.  相似文献   

7.
Fouier-transform infrared (FTIR) difference spectra of several His-E7 and Val-E11 mutants of sperm whale carbonmonoxymyoglobin were obtained by photodissociation at cryogenic temperatures. The IR absorption of the CO ligand shows characteristic features for each of the mutants, both in the ligand-bound (A) state and in the photodissociated (B) state. For most of the mutants, a single A substate band is observed, which points to the crucial role of the His-E7 residue in determining the A substrate spectrum of the bound CO in the native structure. The fact that some of the mutants show more than one stretch band of the bound CO indicates that the appearance of multiple A substates is not exclusively connected to the presence of His-E7. In all but one mutant, multiple stretch bands of the CO in the photodissociated state are observed; these B substates are thought to arise from discrete positions and/or orientations of the photodissociated ligand in the heme pocket. The red shifts of the B bands with respect to the free-gas frequency indicate weak binding in the heme pocket. The observation of similar red shifts in microperoxidase (MP-8), where there is no residue on the distal side, suggests that the photodissociated ligand is still associated with the heme iron. Photoselection experiments were performed to determine the orientation of the bound ligand with respect to the heme normal by photolyzing small fractions of the sample with linearly polarized light at 540 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
 Myoglobin has long served as a model system for understanding the relations between protein structure, dynamics, and function. Its ability to discriminate between toxic CO and vital O2, two small ligands that are almost equivalent in size and dipole moment, has attracted much attention. To understand discrimination and reversible ligand-binding in Mb, both the bound state and the "docked" state that leads to binding need to be studied. We have reported previously the nearly linear Fe–C–O geometry of bound CO and the nearly orthogonal geometry of docked CO [Lim et al. (1995), Science 269 : 962]. With the exception of X-ray structures, a preponderance of evidence points to a nearly linear Fe–C–O geometry and calls into question the proposal that the highly conserved distal histidine forces CO to bind in a nonoptimal geometry. The differences between the bound CO structures determined using IR and X-ray methods might arise from a water molecule hydrogen bonded to the distal histidine in some of the unit cells. Discrimination by Mb is manifested not only thermodynamically but also kinetically. Time-resolved CO rebinding studies that compare Mb with microperoxidase suggest that the heme pocket docking site in Mb exerts steric control of the ligand rebinding rate, slowing the rate of CO binding by a factor of more than 104. Received, accepted: 23 May 1997  相似文献   

9.
We report the optical absorption spectra of sperm whale deoxy-, oxy-, and carbonmonoxymyoglobin in the temperature range 300–20 K and in 65% glycerol or ethylene glycol–water mixtures. By lowering the temperature, all bands exhibit half-width narrowing and peak frequency shift; moreover, the near-ir bands of deoxymyoglobin show a marked increase of the integrated intensities. Opposed to what has already been reported for human hemoglobin, the temperature dependence of the first moment of the investigated bands does not follow the behavior predicted by the harmonic Franck–Condon approximation and is sizably affected by the solvent composition; this solvent effect is larger in liganded than in nonliganded myoglobin. However, for all the observed bands the behavior of the second moment can be quite well rationalized in terms of the harmonic Franck–Condon approximation and is not dependent on solvent composition. On the basis of these data we put forward some suggestions concerning the structural and dynamic properties of the heme pocket in myoglobin and their dependence upon solvent composition. We also discuss the different behaviors of myoglobin and hemoglobin in terms of the different heme pocket structures and deformabilities of the two proteins.  相似文献   

10.
Recombinant human myoglobin mutants with the distal histidine residue replaced by Leu, Val, or Gln residues have been prepared by site-directed mutagenesis and expression in Escherichia coli. The recombinant apomyoglobin proteins have been successfully reconstituted with cobaltous protoporphyrin IX to obtain cobalt myoglobin mutant proteins, and the role of the distal histidine residue on the interaction between the bound ligand and the myoglobin molecule has been studied by EPR spectroscopy. We found that the distal histidine residue is significant in the orientation of the bound oxygen molecule. Low temperature photolysis experiments on both oxy cobalt proteins and ferric nitric oxide complexes indicated that the nature of the photolyzed form depends on the steric crowding of the distal heme pocket. To our surprise, the distal Leu mutant has a less restricted, less sterically crowded distal heme pocket than that of the distal Val mutant myoglobin, despite the fact that Leu has a larger side chain volume than Val. Our results demonstrate that the distal heme pocket steric crowding is not necessarily related to the side chain volume of the E7 residue.  相似文献   

11.
Using fast flash photolysis, we have measured the binding of CO to carboxymethylated cytochrome c and to heme c octapeptide as a function of temperature (5 degrees-350 degreesK) over an extended time range (100 ns(-1) ks). Experiments used a microsecond dye laser (lambda = 540 nm), and a mode-locked frequency-doubled Nd-glass laser (lambda = 530 nm). At low temperatures (5 degrees-120 degreesK) the rebinding exhibits two components. The slower component (I) is nonexponential in time and has an optical spectrum corresponding to rebiding from an S = 2, CO-free deoxy state. The fast component (I*) is exponential in time with a lifetime shorter than 10 mus and an optical spectrum different from the slow component. In myoglobin and the separated alpha and beta chains of hemoglobin, only process I is visible. The optical absorption spectrum of I* and its time dependence suggest that it may correspond to recombination from an excited state in which the iron has not yet moved out of the heme plane. The temperature dependences of both processes have been measured. Both occur via quantum mechanical tunneling at the lowest temperatures and via over-the-barrier motion at higher temperatures.  相似文献   

12.
13.
P Argos  M G Rossmann 《Biochemistry》1979,18(22):4951-4960
Of the 82 three dimensionally characterized residues of cytochrome c551, 49 are found to be structurally and topologically equivalent to the globin fold and 41 are equivalent to the cytochrome b5 fold, with a respective root mean square separation of 3.5 and 4.9 A between equivalenced Calpha atoms. The common fold represents a central heme binding core, corresponding to the middle exon of certain globin genes. After superposition of the protein folds, the heme irons are found to be separated by 5.4 and 1.6 A, while their heme normals are inclined by 6 degrees and 32 degrees, respectively. Furthermore, the heme "face", determined by the asymmetric attachment of the vinyl and propionyl side chains, is directed similarly in all three heme proteins. The heme itself is rotated by 72 degrees and 116 degrees about its normal, respectively. The minimum base change per codon for the three pairwise comparisons corresponds to the expected value of random sequence comparisons. While all three heme proteins may have diverged from a common ancestor, their similarity may have arisen from the requirements of heme binding or the utilization of a particularly stable fold. Known structures within commonly accepted divergent families were superimposed in order to discriminate better between convergence and divergence. Minimum base changes per codon, number of deletions and insertions, percentage of equivalenced residues, precision of heme superposition, and root mean square separation of equivalenced Calpha atoms were tested as measures of evolutionary relationships.  相似文献   

14.
15.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

16.
17.
Dynamics of ligand binding to heme proteins   总被引:23,自引:0,他引:23  
  相似文献   

18.
The ability of myoglobin to bind oxygen reversibly depends critically on retention of the heme prosthetic group. Globin side chains at the Leu(89)(F4), His(97)(FG3), Ile(99)(FG5), and Leu(104)(G5) positions on the proximal side of the heme pocket strongly influence heme affinity. The roles of these amino acids in preventing heme loss have been examined by determining high resolution structures of 14 different mutants at these positions using x-ray crystallography. Leu(89) and His(97) are important surface amino acids that interact either sterically or electrostatically with the edges of the porphyrin ring. Ile(99) and Leu(104) are located in the interior region of the proximal pocket beneath ring C of the heme prosthetic group. The apolar amino acids Leu(89), Ile(99), and Leu(104) "waterproof" the heme pocket by forming a barrier to solvent penetration, minimizing the size of the proximal cavity, and maintaining a hydrophobic environment. Substitutions with smaller or polar side chains at these positions result in exposure of the heme to solvent, the appearance of crystallographically defined water molecules in or near the proximal pocket, and large increases in the rate of hemin loss. Thus, the naturally occurring amino acid side chains at these positions serve to prevent hydration of the His(93)-Fe(III) bond and are highly conserved in all known myoglobins and hemoglobins.  相似文献   

19.
Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.  相似文献   

20.
Haemophilus influenzae has an absolute growth requirement for heme. One potential in vivo source of heme is the protein myoglobin which is found at low levels in human serum. No tested H. influenzae strain was able to use myoglobin as a heme source. However, all strains were able to utilize the heme from myoglobin when myoglobin was complexed with haptoglobin. Utilization of the haptoglobin-myoglobin complex was shown to be mediated by the previously described hemoglobin/hemoglobin-haptoglobin-binding proteins of H. influenzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号