首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 133,000 X g supernatant fraction prepared from ascites cells in 20 mM KCl (low CKl supernatant) contained the initiation factors EIF-1 and EIF-2 (and the elongation factore EF-1 and EF-2) but lacked EIF-3; thus, low KCl supernatant could be used to assay for EIF-3. EIF-3 was prepared from a crude initiation factor perparation (a 250 mM KCl extract of ascites cell ribosomes precipitated with 70% saturated ammonium sulfate) by chromatography on DEAE-Sephadex A-50 and hydroxylapatite. The EIF-O had no detectable EIF-1 and little or no EIF-2. Factor EIF-3 was required fro translation of encephalomyocarditis virus RNA. The molecular weight of EIF-3 was estimated by Sephadex G-200 filtration to be 139,000; the sedimentation coefficient was calculated to be about 5.8. EIF-3 formed a binary complex specifically with the initiator tRNA, Met-tRNAf, and if GTP was present the factor formed a ternary complex (EIF-3-Met-tRNAf-GTP). The EIF-3 preparation had no methionyl-tRNA synthetase activity to account for binding. Complex-formation was with eukaryotic Met-tRNAf and no other aminoacyl-tRNA. The binary and ternary complexes were retained quantitatively on Millipore filters (which was the most convenient assay), but they could also be demonstrated by filtration through Sephadex G-100 or by glycerol gradient centrifugation. GTP increased the rate, the amount, and the stability of complex formed; the ration of GTP to Met-tRNAf in the ternary complex appeared to be 1. The binary and the ternary complexes transferred Met-tRNAf to the 40 S ribosomal subunits, but not to 60 S subparticles. The factor-dependent binding of Met-tRNAf to the 40 S subunit did not require mRNA (or GTP). In the presence of 60 S subunits, the initiator tRNA bound to 40 S subunits was not transferred to 80 S ribosomes even if mRNA was added--that reaction may require another initiation factor. Treatment of EIF-3 with N-ethylmaleimide led to loss of its activity in complex formation and in support of the translation of encephalomyocarditis virus RNA. In addition to forming the binary and ternary complexes, and supporting the translation of encephalomyocarditis virus RNA, EIF-3 also increases the number of free ribosomal subunits by either preventing their association or causing dissociation of 80 S couples.  相似文献   

2.
The roles of Co-eIF-2, Co-eIF-2A80, and GDP in ternary complex and Met-tRNAf X 40 S initiation complex formation were studied. 1) Partially purified eukaryotic initiation factor 2 (eIF-2) (50% pure) preparations contained 0.4-0.6 pmol of bound GDP/pmol of eIF-2. eIF-2 purity was calculated from ternary complex formation in the absence of Mg2+ and in the presence of excess Co-eIF-2. 2) In the absence of Mg2+, approximately 30% of the potentially active eIF-2 molecules formed ternary complexes, and both Co-eIF-2 and Co-eIF-2A80 were equally effective in full activation of the eIF-2 molecules for ternary complex formation. 3) In the presence of Mg2+, approximately 10% of the potentially active eIF-2 molecules formed ternary complexes in the absence of ancillary factors, and the ancillary factors Co-eIF-2A80 and Co-eIF-2 raised the incorporation to 20 and 50% of the eIF-2 molecules, respectively. 4) In the absence of Mg2+, [3H]GDP in preformed eIF-2 X [3H]GDP was readily displaced by GTP during ternary complex formation. 5) In the presence of Mg2+, [3H]GDP remained tightly bound to eIF-2 and ternary complex formation was inhibited. Co-eIF-2, but not Co-eIF-2A80, was effective in promoting [3H]GDP displacement and the former was more effective in promoting ternary complex formation than the latter. 6) eIF-2 X [3H]GDP was converted to eIF-2 X [3H] GTP by incubation in the presence of nucleoside-5'-diphosphate kinase and ATP, but the eIF-2 X [3H]GTP thus formed did not bind Met-tRNAf in the presence of Mg2+ and required exogeneous addition of Co-eIF-2 and GTP for ternary complex formation and GTP displacement. 7) In the absence of Mg2+, the increased ternary complex formed in the presence of eIF-2 X [3H] GDP and Co-eIF-2A80 (with accompanying loss of [3H] GDP) was inactive in a subsequent reaction, which involves Met-tRNAf transfer to 40 S ribosomes (in the presence of Mg2+), and required trace amounts of Co-eIF-2 for such activity. Based on the above observations, we have suggested a two-step activation of eIF-2 molecules by the Co-eIF-2 protein complex for functional ternary complex formation. One of these steps involves the Co-eIF-2A component of Co-eIF-2. This activation results in stimulated Met-tRNAf binding to eIF-2 and is most apparent in the absence of Mg2+ and with aged eIF-2 molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

4.
A Met-tRNAf binding factor (IF-2) from the microsomal fraction of rat liver and rat hepatoma ascites cells was partially purified by ammonium sulphate fractionation, DEAE-cellulose and phosphocellulose chromatography. The factor binds [3H]Met-tRNAf only in the presence of either GTP or GMPPCP. Maximal binding takes place at 37 degrees C and in the absence of Mg++. The factor is specific for Met-tRNAf and does not bind Phe-tRNA from rat liver or from E. coli. The ternary complex [Met-tRNAf . IF-2 . GTP1 binds to 40 S ribosomal subunits from rat liver in the absence of mRNA or poly(A, G, U) without GTP hydrolysis. GDP as well as aurintricarboxylic acid inhibit the ternary complex formation. Both factors are rapidly inactivated by N-ethylmaleimide treatment and by preincubation at 45 degrees C. Heat inactivation is partially prevented by GTP and GDP. With regard to the functional properties there are no significant differences between IF-2 from normal liver and hepatoma cells. On the other hand heat denaturation compared to the rat liver factor, which may be due to differences in contaminating proteins.  相似文献   

5.
The characteristics of yeast eukaryotic initiation factor 2 (eIF-2) and Co-eIF-2A have been studied and compared with those of the corresponding factors from rabbit reticulocytes. 1) Unlike eIF-2r, purified eIF-2y did not contain bound GDP. 2) Purified eIF-2y preparation contained GTPase activity and dephosphorylated GTP to GDP. 3) An anti-eIF-2r preparation which predominantly precipitated the gamma-subunit (Mr 54,000) of eIF-2r also precipitated the larger subunit (Mr 54,000) of eIF-2y. 4) Unlike eIF-2r, ternary complex formation by eIF-2y was not inhibited by Mg2+. 5) Both Co-eIF-2A20y and Co-eIF-2r significantly enhanced Met-tRNAf binding to eIF-2y and, again, Mg2+ did not have any effect on this stimulated Met-tRNAf binding to eIF-2y. 6) Both Co-eIF-2A20y and Co-eIF-2r were similarly effective in stimulating Met-tRNAf binding to eIF-2r in the absence of Mg2+. However, in the presence of Mg2+, Co-eIF-2A20y was significantly less effective than Co-eIF-2r as Co-eIF-2A20y did not promote displacement of GDP from eIF-2r X GDP. 7) eIF-2y bound [3H]GDP and this binding was significantly enhanced in the presence of Mg2+. Also, [3H]GDP in the preformed eIF-2y X [3H]GDP complex was rapidly exchanged with exogenously added unlabeled GDP in the presence of Mg2+. Co-eIF-2A20y had no effect on GDP binding to eIF-2y nor on GDP exchange reactions. 8) Reticulocyte heme-regulated protein synthesis inhibitor, which phosphorylated almost completely (in excess of 80%) the alpha-subunit (Mr 38,000) of eIF-2r, also phosphorylated similarly the smaller subunit (Mr 36,000) of eIF-2y. However, such phosphorylation had no significant effect on ternary complex formation, GDP binding, and GDP exchange reactions.  相似文献   

6.
Eukaryotic initiation factor 2 (eIF-2) is shown to bind ATP with high affinity. Binding of ATP to eIF-2 induces loss of the ability to form a ternary complex with Met-tRNAf and GTP, while still allowing, and even stimulating, the binding of mRNA. Ternary complex formation between eIF-2, GTP, and Met-tRNAf is inhibited effectively by ATP, but not by CTP or UTP. Hydrolysis of ATP is not required for inhibition, for adenyl-5'-yl imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP, is as active an inhibitor; adenosine 5'-O-(thiotriphosphate) (ATP gamma S) inhibits far more weakly. Ternary complex formation is inhibited effectively by ATP, dATP, or ADP, but not by AMP and adenosine. Hence, the gamma-phosphate of ATP and its 3'-OH group are not required for inhibition, but the beta-phosphate is indispensible. Specific complex formation between ATP and eIF-2 is shown 1) by effective retention of Met-tRNAf- and mRNA-binding activities on ATP-agarose and by the ability of free ATP, but not GTP, CTP, or UTP, to effect elution of eIF-2 from this substrate; 2) by eIF-2-dependent retention of [alpha-32P]ATP or dATP on nitrocellulose filters and its inhibition by excess ATP, but not by GTP, CTP, or UTP. Upon elution from ATP-agarose by high salt concentrations, eIF-2 recovers its ability to form a ternary complex with Met-tRNAf and GTP. ATP-induced inhibition of ternary complex formation is relieved by excess Met-tRNAf, but not by excess GTP or guanyl-5'-yl imidodiphosphate (GMP-PNP). Thus, ATP does not act by inhibiting binding of GTP to eIF-2. Instead, ATP causes Met-tRNAf in ternary complex to dissociate from eIF-2. Conversely, affinity of eIF-2 for ATP is high in the absence of GTP and Met-tRNAf (Kd less than or equal to 10(-12) M), but decreases greatly in conditions of ternary complex formation. These results support the concept that eIF-2 assumes distinct conformations for ternary complex formation and for binding of mRNA, and that these are affected differently by ATP. Interaction of ATP with an eIF-2 molecule in ternary complex with Met-tRNAf and GTP promotes displacement of Met-tRNAf from eIF-2, inducing a state favorable for binding of mRNA. ATP may thus regulate the dual binding activities of eIF-2 during initiation of translation.  相似文献   

7.
Dissociation of highly purified EF-1 alpha beta gamma (a high molecular weight form of polypeptide chain elongation factor-1) from pig liver into EF-1 alpha and EF-1 beta gamma at various temperatures was examined and the following results were obtained. (i) When dissociation of EF-1 alpha beta gamma was analyzed by gel filtration with Sephacryl S-200, it was found that in the absence of GTP, it did not dissociate at any temperature between 4 and 37 degrees C, whereas in the presence of GTP, it tended to dissociate with elevation of the temperature, and almost complete dissociation was observed at 32 degrees C. This indicated that the dissociation constant of EF-1 alpha beta gamma into EF-1 alpha and EF-1 beta gamma in the presence of GTP increased with increase in the temperature. (ii) When gel filtration was performed in the presence of both GTP and [14C]Phe-tRNA, the formation of a ternary complex of EF-1 alpha . GTP . [14C]Phe-tRNA from EF-1 alpha beta gamma was noted, and its amount was found to increase with elevation of the temperature. (iii) The amount of [14C]Phe-tRNA bound to ribosomes dependent on added EF-1 alpha beta gamma similarly increased with increase in the temperature, as in the case of ternary complex formation, whereas the binding of [14C]Phe-tRNA to ribosomes dependent on free EF-1 alpha proceeded fairly well even at 0 degrees C. From these results we concluded that among the reaction steps in the binding of [14C]Phe-tRNA to ribosomes dependent on EF-1 alpha beta gamma, dissociation of EF-1 alpha beta gamma to form EF-1 alpha . GTP and EF-1 beta gamma in the presence of GTP is the step which is strongly influenced by temperature.  相似文献   

8.
The peptide chain initiation factor EIF-1 forms a ternary complex, Met-tRNAf·EIF-1·GTP in the absence of Mg++ and the preformed complex is stable to Mg++. However, with homogeneous preparations of EIF-1, addition of Mg++ during the initial formation of the ternary complex strongly inhibits the complex formation.A heat stable dialyzable factor (EIF-11) which mostly remains associated with the high molecular weight protein complex, EIF-2 (TDF) during purification of the peptide chain initiation factors, has been purified using a phenol extraction procedure. EIF-11 restores the Met-tRNAf binding activity of EIF-1 in the presence of 1 mM Mg++; in the presence of EIF-11, Met-tRNAf binding by EIF-1 shows a sharp Mg++ optimum around 1 mM. EIF-11 is heat stable, alkali stable, dialyzable and pronase sensitive. The same EIF-11 preparation also strongly inhibits Met-tRNAf binding to EIF-1 in the absence of Mg++ and stimulates protein synthesis in a mRNA-dependent rabbit reticulocyte lysate system.  相似文献   

9.
A high molecular weight reticulocyte protein factor, named Co-eIF-2, contains Co-eIF-2A, Co-eIF-2B, and Co-eIF-2C activities and stimulates Met-tRNAf binding to eIF-2 both in the presence and absence of Mg2+. Some characteristics of this stimulation in the absence of Mg2+ are: (1) Stimulation is most pronounced at low eIF-2 levels. (2) Stimulation is partially resistant to heat and NEM treatment, and thus appears to be due to the combined action of both heat and NEM-insensitive Co-eIF-2A, and heat and NEM-sensitive Co-eIF-2C activities. (3) [3H]GDP bound in eIF-2 . [3H]GDP complex is rapidly displaced by unlabelled GTP during ternary complex formation Co-eIF-2 stimulates Met-tRNAf binding to eIF-2 even when added after the [3H]GDP from eIF-2 . [3H]GDP has been completely displaced. This indicates that Co-eIF-2-stimulation is not due to GDP displacement from eIF-2 . GDP. We propose that eIF-2 molecules become inactive in the presence of Mg2+ and at high dilution, and Co-eIF-2 restores the inactive eIF-2 molecules into an active form.  相似文献   

10.
The interaction of GTP with initiation factor eIF-2 in different complexes was studied by affinity labeling using a derivative of [3H]GTP carrying a photoreactive group in the alpha-phosphate moiety. In the binary complex [eIF-2.GTP analogue], in the ternary complex [eIF-2.GTP analogue.Met-tRNAf] as well as in the eIF-2. eIF-2B complex the alpha-subunit of eIF-2 was found to be specifically labeled. GTP is concluded to interact during polypeptide chain initiation with the alpha-subunit of eIF-2 at least by its alpha-phosphate group.  相似文献   

11.
Ternary complex formation between [3H]Met-tRNAf, [14C]H3-eIF-2, and GTP was measured on nitrocellulose filters. It is shown that [3H]Met-tRNAf and [14C]H3-eIF-2 are present on the filter in equimolar amounts when ATP, creatine phosphate, and creatine kinase are included in the reaction mixture. Under these conditions the factor is 100% active. With small amounts of factor significant losses occur due to adsorption to the wall of the reaction vessels, resulting in seemingly low activities of eIF-2. These losses can be prevented by the presence of "stimulatory" proteins, which enhance the recovery of both [3H]Met-tRNAf and [14C]H3-eIF-2 on the filter but do not alter their ratio.  相似文献   

12.
The peptide chain initiation factor, EIF-2 has been partially purified from the 0.5 M KCl ribosomal wash. The molecular weight of EIF-2 is approximately 450,000. The purified EIF-2 preparation promotes the dissociation of the ternary complex, Met-tRNAf·EIF-1·GTP in the presence of Mg++ and is also required along with EIF-1 for AUG-directed Met-tRNAf binding to 40S ribosomes.  相似文献   

13.
The activity of eukaryotic initiation factor eIF-2 as to the formation of the ternary complex, eIF-2 GTP Met-tRNA(f), is inhibited by N-ethylmaleimide. Our preparation of pig liver eIF-2 contained alpha and gamma subunits and was inhibited by more than 90% by N-ethylmaleimide. Using our eIF-2, we determined the sequences around the N-ethylmaleimide-reactive sulfhydryl groups, studied the effect of GDP on the sulfhydryl modification and that of NEM on the [3H]GDP binding, and examined the protective effect of GTP against the inhibition of ternary complex formation by N-ethylmaleimide. Both subunits of native eIF-2 contained [14C]N-ethylmaleimide-reactive sulfhydryl groups. One N-ethylmaleimide-reactive sulfhydryl group was in the alpha subunit and 4 were in the gamma subunit. The sequence of the peptide of the alpha subunit was determined to be: Ala-Gly-Leu-Asn-Cys-Ser-Thr-Glu-Thr-Met-Pro-Ile. Two of the four [14C]N-ethylmaleimide-reactive sulfhydryl groups in the gamma subunit were highly reactive, their sequences being: Ile-Val-Leu-Thr-Asn-Pro-Val-Cys-Thr-Glu-Val-Gly-Glu-Lys (gamma 1); Ser-Cys-Gly-Ser-Ser-Thr-Pro-Asp-Glu-Phe-Pro-Thr-Asp-Ile-Pro-Gly-Thr-Lys (gamma 3a). Peptide gamma 3a contained the consensus sequence element (AspXaaXaaGly) of GTP-binding proteins. With preincubation of eIF-2 with GDP, the incorporation of [14C]N-ethylmaleimide into the gamma subunit was reduced to 40% of the control level, but the 14C-incorporation into the alpha subunit did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Nucleoside-diphosphate (NDP) kinase-associated [alpha-32P]GTP-incorporating proteins from HeLa S3 cells have been biochemically characterized. Two distinct NDP-kinases (F-I and F-II) had been partially purified from HeLa S3 cells by Sephacryl S-300 gel filtration and DEAE-cellulose column chromatography. The [alpha-32P]GTP-incorporating proteins (approx. Mr 20,000) could be separated from NDP-kinases (approx. Mr 80,000) by 5-25% glycerol density-gradient centrifugation analysis after treatment with 7 M urea in the presence of 1 mM EDTA. [alpha-32P]GTP incorporation into these two proteins (G1 and G2) from NDP-kinases required 5 mM Mg2+ and was highly inhibited by either GDP or GTP analogues, such as guanylyl imidodiphosphate and guanylyl methylenediphosphate. [3H]GDP, but no other nucleoside 5'-diphosphates, was also bound to these two proteins in the presence of Mg2+ (5 mM). Moreover, incubation of [alpha-32P]GTP with either G1 or G2 in the presence of Mg2+ (5 mM) resulted in the formation of [32P]GDP and Pi. The data presented here indicated that the guanine nucleotide-binding activity, the GTPase activity, and the molecular weight (approx. Mr 20,000) of NDP-kinase-associated proteins from HeLa S3 cells are similar to those reported for ras oncogene products (p21 proteins).  相似文献   

15.
A factor has been isolated from wheat germ that enhances the ability of initiation factor 2 (eIF-2) to form a ternary complex with GTP and Met-tRNAf and enhances the binding of Met-tRNAf to 40 s ribosomal subunits. This factor, designated Co-eIF2 beta, is a monomeric protein with a molecular weight of approximately 83,000. Wheat germ eIF-2 forms a stable binary complex with GDP but not with GTP. Co-eIF-2 beta enhances the formation of an eIF-2 . GDP complex, but does not enable eIF-2 to form a stable complex with GTP.  相似文献   

16.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

17.
The high molecular weight protein complex, Co-eIF-2, contains both Co-eIF-2A and Co-eIF-2C activities (Bagchi, M. K., Banerjee, A. C., Roy, R., Chakravarty, I., and Gupta, N. K. (1982) Nucleic Acids Res. 10, 6501-6510). Co-eIF-2A stimulated Met-tRNAf binding to eukaryotic initiation factor-2 (eIF-2) both in the presence and absence of Mg2+. Co-eIF-2C stimulates Met-tRNAf binding to eIF-2 in the presence of Mg2+ by relieving Mg2+ inhibition of ternary complex formation from eIF-2. Co-eIF-2 protein complex contains several polypeptides including Mr 80,000 and 50,000 polypeptides. Three polypeptides (Mr 80,000, 50,000 and 25,000) are present in 0.5 M KCl ribosomal salt wash and each possesses Co-eIF-2A activity. Mr 80,000 polypeptide (Co-eIF-2A80) has been purified to homogeneity and its properties studied. 1) Co-eIF-2A80 stimulated Met-tRNAf binding to eIF-2 and the complex formed was resistant to aurintricarboxylic acid. 2) Co-eIF-2A80 activity was N-ethylmaleimide-resistant and heat-labile; it was destroyed by heating at 55 degrees C for 4 min. 3) Antibodies prepared against homogeneous Co-eIF-2A80 strongly inhibited protein synthesis in reticulocyte lysates and, also, eIF-2 and Co-eIF-2 promoted Met-tRNAf binding to 40 S ribosomes. Inhibition of protein synthesis in reticulocyte lysates was overcome by preincubation of anti-Co-eIF-2A80 with homogeneous Co-eIF-2A80 and was partially overcome by similar preincubation with Co-eIF-2. 4) Upon limited digestion with Staphylococcus aureus V8 protease, the homogeneous Co-eIF-2A80 gave two major polypeptide fragments (Mr 50,000 and 25,000). Upon similar treatment, an Mr 80,000 polypeptide band isolated from the sodium dodecyl sulfate-gel of the Co-eIF-2 protein complex gave four major polypeptide fragments, and two of these fragments (Mr 50,000 and 25,000) were similar to those given by Co-eIF-2A80, indicating that this Mr 80,000 polypeptide band contains the Co-eIF-2A80 component. We suggest that Co-eIF-2A80 is a component of Co-eIF-2 and is also essential for Co-eIF-2 activity and overall peptide chain initiation.  相似文献   

18.
D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000.  相似文献   

19.
Formation of a ternary initiation complex containing Met-tRNAf, GTP and eukaryotic initiation factor 2, is the first step in sequential assembly of the initiation complex. The concentration of GTP required for half maximal formation of the ternary complex is 2.5 with 10(-6) M. GDP is a potent competitive inhibitor of ternary complex formation with Ki = 3.4 with 10(-7) M. The nucleotide binding site on eukaryotic initiation factor 2 demonstrates relative specificity for GDP with KD(GDP) = 3.0 with 10(-8) M; 100-fold higher concentrations of GTP than GDP are required for displacement of either [(3)H]GDP or [(3)h]gtp from the necleotide binding site. An ATP-dependent stimulation of ternary complex formation observed in partially purified initiation factor preparations is due to nucleoside diphosphate kinase (EC 2.7.4.6) which serves to remove inhibitory levels of GDP by phosphorylation with ATP. Since GTP is hydrolyzed to GDP during protein synthesis, this provides a mechanism by which the ATP:ADP ratio may regulate the rate of initiation of protein synthesis.  相似文献   

20.
Evidence is presented that the GTP initially bound in ternary complex (Met-tRNAf.GTP.eukaryotic initiation factor 2 (eIF-2)) is the same GTP that is hydrolyzed to allow joining of a 40 S preinitiation complex with 60 S subunits. This evidence was obtained by two quite dissimilar techniques. The first was a kinetic analysis of AUG-directed methionyl-puromycin synthesis using either eIF-2 of eIF-2A to direct the binding of Met-tRNAf to 40 S subunits. The second technique was the isolation of 40 S preinitiation complexes by Sepharose 6B chromatography and subsequent quantitation of GTP hydrolysis and methionyl-puromycin synthesis under conditions where 80 S complex formation is permitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号