首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology.  相似文献   

2.
Insulin-like growth factors (IGFs) are important stimulators of proliferation and differentiation of cultured myoblasts. It has previously been shown that IGF-I is induced during muscle regeneration in rodents, however, little is known about the expression of IGF-II. Therefore, two in vivo models were used to analyze IGF-II mRNA expression during skeletal muscle regeneration in the rat: injection of the snake venom notexin and induction of ischemia. During the regeneration process the levels of both IGF-I and IGF-II mRNA were transiently induced, as analyzed by solution hybridization. Both IGF-I-like immunoreactivity and IGF-II-like immunoreactivity were found to be present during muscle regeneration. In a time course study, induction of IGF-II was preceded by IGF-I, both at the mRNA and protein levels. Using alpha- and beta-actin as markers for different stages of skeletal muscle differentiation, together with the immunohistochemistry data, it is concluded that the expression of IGF-I and IGF-II occurs at different differentiation stages, and that IGF-II appears concomitant to the formation of myotubes. These results suggest that each IGF has a distinct role during the differentiation of muscle cells.  相似文献   

3.
Chen Q  Kon J  Ooe H  Sasaki K  Mitaka T 《Nature protocols》2007,2(5):1197-1205
This protocol details a method of obtaining selectively proliferated hepatocyte progenitor cells using hyaluronic acid (HA)-coated dishes and serum-free medium. A small hepatocyte (SH) is a hepatocyte progenitor cell of adult livers and has many hepatic functions. When the rat SH begins to proliferate, CD44 is specifically expressed. To define the purification of SH, CD44 and cytokeratin 8 are used as marker proteins. The growth of SHs is faster on HA-coated dishes than on other extracellular matrix-coated ones. The use of both DMEM/F12 medium and HA-coated dishes allows the selective proliferation of SHs in culture. The purification of SHs is approximately 85% at day 10.  相似文献   

4.
A lactose-extractable lectin obtained from 14--16-d embryonic chick pectoral muscle and myotube muscle cultures by affinity chromatography inhibited myotube formation in culture. When applied to muscle cultures at 0.09 micrograms/ml, the purified lectin produced variable effects on the inhibition of myotube formation related to the time and length of application, suggesting that components of the culture medium and/or temperature produced inactivation. Hemagglutination assays showed that the lectin was inactivated by horse serum and by chick embryo extract but not by L-15 salt solution at 4 degrees C. Incubation in L-15 solution at 37 degrees C with or without 2 mM dithiothreitol resulted in inactivation in 2--3 h. To maximize the effect of the lectin on the inhibition of myotube formation, primary muscle cultures were grown in low [Ca+2] medium to inhibit fusion, and then [Ca+2] was increased to elicit fusion in the absence and presence of lectin with solution renewal every 2 h. Without lectin, myotube formation was normal, whereas, with lectin, it was inhibited by 93%. Continued incubation at 37 degrees C. without renewal of lectin resulted in myotube formation, suggesting reversibility by lectin inactivation.  相似文献   

5.
Skeletal muscle work hypertrophy is usually connected with muscle progenitor SC (satellite cells) activation with subsequent incorporation their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and be accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by gamma-irradiation would partly preavent stretched muscle fiber capability to maintain their size under condition of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposure to ionizing radiation (2500 Rad) and then subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myo-nuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We concluded that satellite cells did not make essential contribution to passive stretch preventive action under condition of simulated weightlessness.  相似文献   

6.
7.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   

8.
Remodeling by its very nature implies synthesis and degradation of extracellular matrix components (such as elastin, collagen, and connexins). Most of the vascular matrix metalloproteinase (MMP) are latent because of the presence of constitutive nitric oxide (NO). However, during oxidative stress peroxinitrite (ONOO-) activates the latent MMPs and instigates vascular remodeling. Interestingly, in mesenteric artery, homocysteine (Hcy) decreases the NO bio-availability, and folic acid (FA, an Hcy-lowering agent) mitigates the Hcy-mediated mesentery artery dysfunction. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) and endothelial nitric oxide synthase (eNOS) increases NO production. The hypothesis was that the Hcy decreased NO bio-availability, in part, activating MMP, decreasing elastin, DDAH-2, eNOS and increased vasomotor response by increasing connexin. To test this hypothesis,the authors used 12-week-old C57BJ/L6 wild type (WT) and hyperhomocysteinemic (HHcy)-cystathione beta synthase heterozygote knockout (CBS+/-) mice. Blood pressure measurements were made by radio-telemetry. WT and MMP-9 knockout mice were administered with Hcy (0.67 mg/ml in drinking water). Superior mesenteric artery and mesenteric arcade were analyzed with light and confocal microscopy. The protein expressions were measured by western blot analysis. The mRNA levels for MMP-9 were measured by RT-PCR. The data showed decreased DDAH-2 and eNOS expressions in mesentery in CBS-/+ mice compared with WT mice. Immuno-fluorescence and western blot results suggest increased MMP-9 and connexin-40 expression in mesenteric arcades of CBS-/+ mice compared with WT mice. The wall thickness of third-order mesenteric artery was increased in CBS-/+ mice compared to WT mice. Hcy treatment increased blood pressure in WT mice. Interestingly, in MMP-9 KO, Hcy did not increase blood pressure. These results may suggest that HHcy causes mesenteric artery remodeling and narrowing by activating MMP-9 and decreasing DDAH-2 and eNOS expressions, compromising the blood flow, instigating hypertension, and acute abdomen pain.  相似文献   

9.
10.
11.
Working hypertrophy of skeletal muscle is usually coupled with activation of satellite cells with subsequent incorporation of their nuclei into muscle fibers. Earlier, it has been repeatedly shown that muscle stretching prevents the development of atrophic alterations and is accompanied by an intensification of protein synthesis. We suggested that the elimination of the proliferative abilities of progenitor cells by γ-irradiation would lead to a partial loss of the ability of muscle fibers to maintain their size. To evaluate the role of progenitor cells in the development of the preventive effect of passive stretching, an experiment was carried out with the 2500 rad local irradiation of a rat shin and subsequent hind-limb suspension or hind-limb suspension with stretch. Passive stretching during hind-limb suspension completely prevented atrophy, the transformation of fibers, and a decrease in the myonuclear number observed in the hind-limb-suspension group. Irradiation produced no action of the preventive effect of passive stretch. The conclusion is made that passive stretch preventive action is also realized in the absence of proliferating satellite cells.  相似文献   

12.
13.

Background  

Hypoxia plays a critical role in various cellular mechanisms, including proliferation and differentiation of neural stem and progenitor cells. In the present study, we explored the impact of lowered oxygen on the differentiation potential of human neural progenitor cells, and the role of erythropoietin in the differentiation process.  相似文献   

14.
15.
16.
17.
In the past years, cardiovascular progenitor cells have been isolated from the human heart and characterized. Up to date, no studies have been reported in which the developmental potential of foetal and adult cardiovascular progenitors was tested simultaneously. However, intrinsic differences will likely affect interpretations regarding progenitor cell potential and application for regenerative medicine. Here we report a direct comparison between human foetal and adult heart‐derived cardiomyocyte progenitor cells (CMPCs). We show that foetal and adult CMPCs have distinct preferences to differentiate into mesodermal lineages. Under pro‐angiogenic conditions, foetal CMPCs form more endothelial but less smooth muscle cells than adult CMPCs. Foetal CMPCs can also develop towards adipocytes, whereas neither foetal nor adult CMPCs show significant osteogenic differentiation. Interestingly, although both cell types differentiate into heart muscle cells, adult CMPCs give rise to electrophysiologically more mature cardiomyocytes than foetal CMPCs. Taken together, foetal CMPCs are suitable for molecular cell biology and developmental studies. The potential of adult CMPCs to form mature cardiomyocytes and smooth muscle cells may be essential for cardiac repair after transplantation into the injured heart.  相似文献   

18.
Amino acids have various physiological activities that influence processes such as intestinal regeneration, EGF secretion, protein synthesis, and cell growth. Salivary glands are exposed to nutrients that influence their proliferation and regeneration. Glycine is included in saliva in large quantities and reportedly has important roles in antibacterial activities and the inhibition of tumor growth and as a precursor of nucleotide synthesis in cell proliferation. We have investigated the effects of glycine on the proliferation and differentiation of salivary glands by using mouse salivary-gland-derived progenitor (mSGP) cells. In cultures of mSGP cells, cell proliferation is suppressed in the presence of glycine, whereas it is promoted by its removal. Glycine promotes three-dimensional formations of mSGP cells, which are negative for immature markers and positive for differentiation markers. In cell-cycle analysis, cell-cycle progression is delayed at the S-phase by glycine supplementation. Glycine also suppresses the phosphorylation of p42/p44MAPK. These results suggest that glycine suppresses the proliferation and promotes the differentiation of mSGP cells, and that it has inhibitory effects on growth factor signaling and cell-cycle progression. Glycine might therefore be a physiological activator that regulates the proliferation and differentiation of salivary glands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported in part by the Advanced Education Program for Integrated Clinical, Basic and Social Medicine, Graduate School of Medical Sciences, Kumamoto University (Support Program for Improving Graduate School Education, MEXT, Japan).  相似文献   

19.
The satellite cell is responsible for growth and repair of postnatal skeletal muscle. We investigated the expression of the myogenic regulatory gene (MRG) family in these cells in the stages from quiescence to fusion. Using polymerase chain reaction amplification of reverse-transcribed RNA (RT-PCR) isolated from adult rat satellite cells, we demonstrated a temporal sequence of gene activation, which is distinct from that previously observed in embryonic somitic cells. No MRG expression was detected in predominantly quiescent cells. MyoD is activated by 12 h in cell culture, prior to the first evidence of proliferation. MRF4 and myf-5 appear by 48 h and may be associated with the first division cycle. Myogenin is not detectable until 72 h after satellite cell recovery from the muscle fiber, coincidental with the first evidence of differentiation. © 1994 wiley-Liss, Inc.  相似文献   

20.
Smooth muscle cells (SMC) from various arterial origins have been successfully maintained in culture. The present study evaluates the proliferative activity of aortic and mesenteric SMC in culture. Aortic and mesenteric SMC were obtained from male Wistar rats by explant and enzyme digestion techniques, respectively. Vascular SMC obtained by either method exhibited a characteristic hill-and-valley growth pattern in culture after confluence and were positively labelled with either anti-smooth muscle actin or myosin by an indirect immunofluorescent method. The rate of incorporation of thymidine into DNA and cell number counting were used as indices of proliferation in vitro. Vascular SMC from passages 4-33 were first synchronized with either Dullbecco's Modified Eagle's Medium (DME) or Ham's F-12 medium, supplemented with insulin-transferring-selenium (ITS), for 72 hours. SMC were then stimulated with 10% bovine serum for either 24 or 72 hours with the former processed for scintillation counting, the latter for cell number determination. The incorporation of tritiated thymidine into DNA following a 2 hour incubation was determined by scintillation counting after perchloric acid extraction. In terms of cell numbers, proliferative responses to bovine serum were determined by Coulter counting. Autoradiography was also carried out in some cultures to determine both thymidine and mitotic labelling indices. The rate of thymidine incorporation in aortic cells was 2-3 fold higher than in mesenteric cells. Aortic and mesenteric SMC lines exhibited similar cell cycle intervals in terms of total duration and individuals cycle parameters. However, the total thymidine index was higher in the aortic than mesenteric SMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号