首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although it is well established that the Gdnf-Ret signal transduction pathway initiates metanephric induction, no single regulator has yet been identified to specify the metanephric mesenchyme or blastema within the intermediate mesoderm, the earliest step of metanephric kidney development and the molecular mechanisms controlling Gdnf expression are essentially unknown. Previous studies have shown that a loss of Eya 1 function leads to renal agenesis that is a likely result of failure of metanephric induction. The studies presented here demonstrate that Eya 1 specifies the metanephric blastema within the intermediate mesoderm at the caudal end of the nephrogenic cord. In contrast to its specific roles in metanephric development, Eya 1 appears dispensable for the formation of nephric duct and mesonephric tubules. Using a combination of null and hypomorphic Eya 1 mutants, we now demonstrated that approximately 20% of normal Eya 1 protein level is sufficient for establishing the metanephric blastema and inducing the ureteric bud formation but not for its normal branching. Using Eya 1, Gdnf, Six 1 and Pax 2 mutant mice, we show that Eya 1 probably functions at the top of the genetic hierarchy controlling kidney organogenesis and it acts in combination with Six 1 and Pax 2 to regulate Gdnf expression during UB outgrowth and branching. These findings uncover an essential function for Eya 1 as a critical determination factor in acquiring metanephric fate within the intermediate mesoderm and as a key regulator of Gdnf expression during ureteric induction and branching morphogenesis.  相似文献   

3.
Interaction between the ureteric-bud epithelium and the metanephric mesenchyme is important for kidney development. Six1 and Six4 are the mammalian homologs of Drosophila sine oculis, and they are coexpressed in the nephrogenic mesenchyme. Six1-deficient mice show varying kidney defects, while Six4-deficient mice have no apparent abnormalities. Here, we report Six1/Six4-deficient mice that we generated in order to elucidate the functions of Six4 in Six1-deficient kidney development. The Six1/Six4-deficient mice exhibited more severe kidney phenotypes than the Six1-deficient mice; kidney and ureter agenesis was observed in all the neonates examined. The Six1/Six4-deficient metanephric mesenchyme cells were directed toward kidney lineage but failed to express Pax2, Pax8, or Gdnf, whereas the expression of these genes was partially reduced or unchanged in the case of Six1 deficiency. Thus, Six4 cooperates with Six1 in the metanephric mesenchyme to regulate the level of Gdnf expression; this could explain the absence of the ureteric bud in the Six1/Six4-deficient mice. In contrast, Six1 deficiency alone caused defects in mesonephric-tubule formation, and these defects were not exacerbated in the Six1/Six4-deficient mesonephros. These results highlight the fact that Six1 and Six4 have collaborative functions in the metanephros but not in the mesonephros.  相似文献   

4.
Development of the metanephric kidney crucially depends on proper interactions between cells and the surrounding extracellular matrix. For example, we showed previously that in the absence of alpha8beta1 integrin, invasion by the ureteric bud into the metanephric mesenchyme is inhibited, resulting in renal agenesis. Here we present genetic evidence that the extracellular matrix protein nephronectin is an essential ligand that engages alpha8beta1 integrin during early kidney development. We show that embryos lacking a functional nephronectin gene frequently display kidney agenesis or hypoplasia, which can be traced to a delay in the invasion of the metanephric mesenchyme by the ureteric bud at an early stage of kidney development. Significantly, we detected no defects in extracellular matrix organization in the nascent kidneys of the nephronectin mutants. Instead, we found that Gdnf expression was dramatically reduced in both nephronectin- and alpha8 integrin-null mutants specifically in the metanephric mesenchyme at the time of ureteric bud invasion. We show that this reduction is sufficient to explain the agenesis and hypoplasia observed in both mutants. Interestingly, the reduction in Gdnf expression is transient, and its resumption presumably enables the nephronectin-deficient ureteric buds to invade the metanephric mesenchyme and begin branching. Our results thus place nephronectin and alpha8beta1 integrin in a pathway that regulates Gdnf expression and is essential for kidney development.  相似文献   

5.
Six1 is required for the early organogenesis of mammalian kidney   总被引:12,自引:0,他引:12  
  相似文献   

6.
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.  相似文献   

7.
During kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of the metanephric mesenchymal precursor cells have not yet been identified. In this paper, we report that functional inactivation of the homeobox gene Six2 results in premature and ectopic differentiation of mesenchymal cells into epithelia and depletion of the progenitor cell population within the metanephric mesenchyme. Failure to renew the mesenchymal cells results in severe renal hypoplasia. Gain of Six2 function in cortical metanephric mesenchymal cells was sufficient to prevent their epithelial differentiation in an organ culture assay. We propose that in the developing kidney, Six2 activity is required for maintaining the mesenchymal progenitor population in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud.  相似文献   

8.
Growth/differentiation factor 11 (Gdf11) is a transforming growth factor beta family member previously shown to control anterior/posterior patterning of the axial skeleton. We now report that Gdf11 also regulates kidney organogenesis. Mice carrying a targeted deletion of Gdf11 possess a spectrum of renal abnormalities with the majority of mutant animals lacking both kidneys. Histological analysis revealed a failure in ureteric bud formation at the initial stage of metanephric development in most Gdf11 mutant embryos examined. The metanephric mesenchyme of mutant embryos lacking a ureteric bud was found to be defective in the expression of glial cell line-derived neurotrophic factor (Gdnf), a gene known to direct ureteric bud outgrowth. The addition of Gdnf protein to urogenital tracts taken from Gdf11 null embryos induced ectopic ureteric bud formation along the Wolffian duct. Our studies suggest that Gdf11 may be important in directing the initial outgrowth of the ureteric bud from the Wolffian duct by controlling the expression of Gdnf in the metanephric mesenchyme.  相似文献   

9.
Formation of kidney tissue requires the generation of kidney precursor cells and their subsequent differentiation into nephrons, the functional filtration unit of the kidney. Here we report that the gene odd-skipped related 1 (Odd1) plays an important role in both these processes. Odd1 is the earliest known marker of the intermediate mesoderm, the precursor to all kidney tissue. It is localized to mesenchymal precursors within the mesonephric and metanephric kidney and is subsequently downregulated upon tubule differentiation. Mice lacking Odd1 do not form metanephric mesenchyme, and do not express several other factors required for metanephric kidney formation, including Eya1, Six2, Pax2, Sall1 and Gdnf. In transient ectopic expression experiments in the chick embryo, Odd1 can promote expression of the mesonephric precursor markers Pax2 and Lim1. Finally, persistent expression of Odd1 in chick mesonephric precursor cells inhibits differentiation of these precursors into kidney tubules. These data indicate that Odd1 plays an important role in establishing kidney precursor cells, and in regulating their differentiation into kidney tubular tissue.  相似文献   

10.
During embryonic development, the anterior-posterior body axis is specified in part by the combinatorial activities of Hox genes. Given the poor DNA binding specificity of Hox proteins, their interaction with cofactors to regulate target genes is critical. However, few regulatory partners or downstream target genes have been identified. Herein, we demonstrate that Hox11 paralogous proteins form a complex with Pax2 and Eya1 to directly activate expression of Six2 and Gdnf in the metanephric mesenchyme. We have identified the binding site within the Six2 enhancer necessary for Hox11-Eya1-Pax2-mediated activation and demonstrate that this site is essential for Six2 expression in vivo. Furthermore, genetic interactions between Hox11 and Eya1 are consistent with their participation in the same pathway. Thus, anterior-posterior-patterning Hox proteins interact with Pax2 and Eya1, factors important for nephrogenic mesoderm specification, to directly regulate the activation of downstream target genes during early kidney development.  相似文献   

11.
Hoxa11 and Hoxd11 are functionally redundant during kidney development. Mice with homozygous null mutation of either gene have normal kidneys, but double mutants have rudimentary, or in extreme cases, absent kidneys. We have examined the mechanism for renal growth failure in this mouse model and find defects in ureteric bud branching morphogenesis. The ureteric buds are either unbranched or have an atypical pattern characterized by lack of terminal branches in the midventral renal cortex. The mutant embryos show that Hoxa11 and Hoxd11 control development of a dorsoventral renal axis. By immunohistochemical analysis, Hoxa11 expression is restricted to the early metanephric mesenchyme, which induces ureteric bud formation and branching. It is not found in the ureteric bud. This suggests that the branching defect had been caused by failure of mesenchyme to epithelium signaling. In situ hybridizations with Wnt7b, a marker of the metanephric kidney, show that the branching defect was not simply the result of homeotic transformation of metanephros to mesonephros. Absent Bf2 and Gdnf expression in the midventral mesenchyme, findings that could by themselves account for branching defects, shows that Hoxa11 and Hoxd11 are necessary for normal gene expression in the ventral mesenchyme. Attenuation of normal gene expression along with the absence of a detectable proliferative or apoptotic change in the mutants show that one function of Hoxa11 and Hoxd11 in the developing renal mesenchyme is to regulate differentiation necessary for mesenchymal-epithelial reciprocal inductive interactions.  相似文献   

12.
Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a member of the Wnt superfamily of secreted glycoproteins, which have important regulatory functions during vertebrate embryonic development, is specifically expressed in the tips of the branching ureteric epithelium. In this work, we explore the role of Wnt11 in ureteric branching and use a targeted mutation of the Wnt11 locus as an entrance point into investigating the genetic control of collecting duct morphogenesis. Mutation of the Wnt11 gene results in ureteric branching morphogenesis defects and consequent kidney hypoplasia in newborn mice. Wnt11 functions, in part, by maintaining normal expression levels of the gene encoding glial cell-derived neurotrophic factor (Gdnf). Gdnf encodes a mesenchymally produced ligand for the Ret tyrosine kinase receptor that is crucial for normal ureteric branching. Conversely, Wnt11 expression is reduced in the absence of Ret/Gdnf signaling. Consistent with the idea that reciprocal interaction between Wnt11 and Ret/Gdnf regulates the branching process, Wnt11 and Ret mutations synergistically interact in ureteric branching morphogenesis. Based on these observations, we conclude that Wnt11 and Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing mesenchyme to ensure continued metanephric development.  相似文献   

13.
To characterize cis-acting regulatory elements of the murine homeobox gene, Hox-2.2, transgenic mouse lines were generated that contained the LacZ reporter gene under the control of different fragments from the presumptive Hox-2.2 promoter. A promoter region of 3600 base pairs (bp) was identified, which reproducibly directed reporter gene expression into specific regions of developing mouse embryos. At 8.5 days postcoitum (p.c.) reporter gene activity was detected in posterior regions of the lateral mesoderm and, in subsequent developmental stages, expression of the LacZ gene was restricted to specific regions of the developing limb buds and the mesenchyme of the ventrolateral body region. This pattern of Hox-2.2-LacZ expression was found in all transgenic embryos that have been generated with the 3.6 kb promoter fragment (two founder embryos and embryos from five transgenic lines). In addition, embryos from two transgenic mouse lines expressed the reporter gene at low levels in the developing central nervous system (CNS). Our results are consistent with the idea that in addition to their presumptive role in CNS and vertebrae development, Hox-2.2 gene products are involved in controlling pattern formation in developing limbs.  相似文献   

14.
SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site   总被引:10,自引:0,他引:10  
Kidney development occurs in a stereotypic position along the body axis. It begins when a single ureteric bud emerges from the nephric duct in response to GDNF secreted by the adjacent nephrogenic mesenchyme. Posterior restriction of Gdnf expression is considered critical for correct positioning of ureteric bud development. Here we show that mouse mutants lacking either SLIT2 or its receptor ROBO2, molecules known primarily for their function in axon guidance and cell migration, develop supernumerary ureteric buds that remain inappropriately connected to the nephric duct, and that the SLIT2/ROBO2 signal is transduced in the nephrogenic mesenchyme. Furthermore, we show that Gdnf expression is inappropriately maintained in anterior nephrogenic mesenchyme in these mutants. Thus our data identify an intercellular signaling system that restricts, directly or indirectly, the extent of the Gdnf expression domain, thereby precisely positioning the site of kidney induction.  相似文献   

15.
Semaphorins, originally identified as axon guidance molecules, have also been implicated in angiogenesis, function of the immune system and cancerous growth. Here we show that deletion of Plexin B2 (Plxnb2), a semaphorin receptor that is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney, results in renal hypoplasia and occasional double ureters. The rate of cell proliferation in the ureteric epithelium and consequently the number of ureteric tips are reduced in the kidneys lacking Plexin B2 (Plxnb2-/-). Semaphorin 4C, a ligand for Plexin B2, stimulates branching of the ureteric epithelium in wild type and Plxnb2+/- kidney explants, but not in Plxnb2-/- explants. As shown by co-immunoprecipitation Plexin B2 interacts with the Ret receptor tyrosine kinase, the receptor of Glial-cell-line-derived neurotrophic factor (Gdnf), in embryonic kidneys. Isolated Plxnb2-/- ureteric buds fail to respond to Gdnf by branching, but this response is rescued by Fibroblast growth factor 7 and Follistatin as well as by the metanephric mesenchyme. The differentiation of the nephrogenic mesenchyme, its morphology and the rate of apoptosis in the Plxnb2-/- kidneys are normal. Plexin B2 is co-expressed with Plexin B1 (Plxnb1) in the kidney. The double homozygous Plxnb1-Plxnb2-deficient mice show high embryonic lethality prior to onset of nephrogenesis. The only double homozygous embryo surviving to E12 showed hypoplastic kidneys with ureteric branches and differentiating mesenchyme. Taken together, our results show that Sema4C-Plexin B2 signalling regulates ureteric branching, possibly through modulation of Gdnf signalling by interaction with Ret, and suggest non-redundant roles for Plexin B1 and Plexin B2 in kidney development.  相似文献   

16.
17.
Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithelial buds and restores outgrowth and branching. All epithelial buds express Wnt11, and Gdnf is significantly upregulated in the surrounding mesenchyme, indicating that epithelial-mesenchymal (e-m) feedback signalling is restored. In the wild type, Bmp4 is expressed by the mesenchyme enveloping the Wolffian duct and ureteric bud and Grem1 is upregulated in the mesenchyme around the nascent ureteric bud prior to initiation of its outgrowth. In agreement, BMP activity is reduced locally as revealed by lower levels of nuclear pSMAD protein in the mesenchyme. By contrast, in Grem1-deficient kidney rudiments, pSMAD proteins are detected in many cell nuclei in the metanephric mesenchyme, indicative of excessive BMP signal transduction. Indeed, genetic lowering of BMP4 levels in Grem1-deficient mouse embryos completely restores ureteric bud outgrowth and branching morphogenesis. The reduction of BMP4 levels in Grem1 mutant embryos enables normal progression of renal development and restores adult kidney morphology and functions. This study establishes that initiation of metanephric kidney development requires the reduction of BMP4 activity by the antagonist gremlin 1 in the mesenchyme, which in turn enables ureteric bud outgrowth and establishment of autoregulatory GDNF/WNT11 feedback signalling.  相似文献   

18.
The outgrowth of the ureteric bud from the posterior nephric duct epithelium and the subsequent invasion of the bud into the metanephric mesenchyme initiate the process of metanephric, or adult kidney, development. The receptor tyrosine kinase RET and glial cell-derived neurotrophic factor (GDNF) form a signaling complex that is essential for ureteric bud growth and branching morphogenesis of the ureteric bud epithelium. We demonstrate that Pax2 expression in the metanephric mesenchyme is independent of induction by the ureteric bud. Pax2 mutants are deficient in ureteric bud outgrowth and do not express GDNF in the uninduced metanephric mesenchyme. Furthermore, Pax2 mutant mesenchyme is unresponsive to induction by wild-type heterologous inducers. In normal embryos, GDNF is sufficient to induce ectopic ureter buds in the posterior nephric duct, a process inhibited by bone morphogenetic protein 4. However, GDNF replacement in organ culture is not sufficient to stimulate ureteric bud outgrowth from Pax2 mutant nephric ducts, indicating additional defects in the nephric duct epithelium of Pax2 mutants. Pax2 can activate expression of GDNF in cell lines derived from embryonic metanephroi. Furthermore, Pax2 protein can bind to upstream regulatory elements within the GDNF promoter region and can transactivate expression of reporter genes. Thus, activation of GDNF by Pax2 coordinates the position and outgrowth of the ureteric bud such that kidney development can begin.  相似文献   

19.
Clonal cell lines representing different developmental stages of the metanephric mesenchyme were made from transgenic mice with the Simian Virus 40 T-antigen (SV40 Tag) gene driven by the Hoxa 11 promoter. The resulting mK3 cell line represented early metanephric mesenchyme, prior to induction by the ureteric bud. These cells showed a spindle-shaped, fibroblast morphology. They expressed genes characteristic of early mesenchyme, including Hoxa 11, Hoxd 11, collagen I, and vimentin. Moreover, the mK3 cells displayed early metanephric mesenchyme biological function. In organ co-culture experiments they were able to induce growth and branching of the ureteric bud. Another cell line, mK4, represented later, induced metanephric mesenchyme undergoing epithelial conversion. These cells were more polygonal, or epithelial in shape, and expressed genes diagnostic of late mesenchyme, including Pax-2, Pax-8, Wnt-4, Cadherin-6, Collagen IV, and LFB3. To better define the gene expression patterns of kidney metanephric mesenchyme cells at these two stages of development, RNAs from the mK3 and mK4 cells were hybridized to Affymetrix GeneChip probe arrays. Over 4000 expressed genes were identified and thereby implicated in kidney formation. Comparison of the mK3 and mK4 gene expression profiles revealed 121 genes showing greater than a ten-fold difference in expression level. Several are known to be expressed during metanephric mesenchyme differentiation, but most had not been previously associated with this process. In situ hybridizations were used to confirm that selected novel genes were expressed in the developing kidney.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号