首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
To investigate the relationships between the loci expressing functions of estrogen receptor (ER)alpha and that of ERbeta, we analyzed the subnuclear distribution of ERalpha and ERbeta in response to ligand in single living cells using fusion proteins labeled with different spectral variants of green fluorescent protein. Upon activation with ligand treatment, fluorescent protein-tagged (FP)-ERbeta redistributed from a diffuse to discrete pattern within the nucleus, showing a similar time course as FP-ERalpha, and colocalized with FP-ERalpha in the same discrete cluster. Analysis using deletion mutants of ERalpha suggested that the ligand-dependent redistribution of ERalpha might occur through a large part of the receptor including at least the latter part of activation function (AF)-1, the DNA binding domain, nuclear matrix binding domain, and AF-2/ligand binding domain. In addition, a single AF-1 region within ERalpha homodimer, or a single DNA binding domain as well as AF-1 region within the ERalpha/ERbeta heterodimer, could be sufficient for the cluster formation. More than half of the discrete clusters of FP-ERalpha and FP-ERbeta were colocalized with hyperacetylated histone H4 and a component of the chromatin remodeling complex, Brg-1, indicating that ERs clusters might be involved in structural changes of chromatin.  相似文献   

2.
3.
4.
5.
This study investigated the effects of E2, diethylstilbestrol (DES), antiestrogens, the phytoestrogen resveratrol, and the xenoestrogens octylphenol (OP), nonylphenol (NP), endosulfan, kepone, 2,3,4,5-tetrachlorobiphenyl-4-ol (HO-PCB-Cl(4)), bisphenol-A (BPA), and 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on induction of luciferase activity in breast cancer cells transfected with a construct (pSp1(3)) containing three tandem GC-rich Sp binding sites linked to luciferase and wild-type or variant ERalpha. The results showed that induction of luciferase activity was highly structure-dependent in both MCF-7 and MDA-MB-231 cells. Moreover, RNA interference assays using small inhibitory RNAs for Sp1, Sp3 and Sp4 also demonstrated structure-dependent differences in activation of ERalpha/Sp1, ERalpha/Sp3 and ERalpha/Sp4. These results demonstrate for the first time that various structural classes of ER ligands differentially activate wild-type and variant ERalpha/Sp-dependent transactivation, selectively use different Sp proteins, and exhibit selective ER modulator (SERM)-like activity.  相似文献   

6.
7.
8.
9.
The function of pancreatic beta-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ER alpha and ER beta, are important molecules involved in glucose metabolism, yet their role in pancreatic beta-cell physiology is still greatly unknown. In this report we show that both ER alpha and ER beta are present in pancreatic beta-cells. Long term exposure to physiological concentrations of 17beta-estradiol (E2) increased beta-cell insulin content, insulin gene expression and insulin release, yet pancreatic beta-cell mass was unaltered. The up-regulation of pancreatic beta-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ER alpha and ER beta agonists as well as ER alphaKO and ER betaKO mice suggests that the estrogen receptor involved is ER alpha. The up-regulation of pancreatic insulin content by ER alpha activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

10.
11.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

12.
13.
14.
15.
Two functionally distinct classes of coactivators are recruited by liganded estrogen receptor, the DRIP/Mediator complex and p160 proteins, although the relative dynamics of recruitment is unclear. Previously, we have shown a direct, estradiol-dependent interaction between the DRIP205 subunit of the DRIP complex and the estrogen receptor (ER) AF2 domain. Here we demonstrate the in vivo recruitment of other endogenous DRIP subunits to ER in response to estradiol treatment in MCF-7 cells. To explore the relationship between DRIP and p160 coactivators, we examined the kinetics of coactivator recruitment to the ER target promoter, pS2, by chromatin immunoprecipitation. We observed a cyclic association and dissociation of coactivators with the promoter, with recruitment of p160s and DRIPs occurring in opposite phases, suggesting an exchange between these coactivator complexes at the target promoter.  相似文献   

16.
17.
Although administration of 17beta-estradiol (estrogen) following trauma-hemorrhage attenuates the elevation of cytokine production and mitogen-activated protein kinase (MAPK) activation in epidermal keratinocytes, whether the salutary effects of estrogen are mediated by estrogen receptor (ER)-alpha or ER-beta is not known. To determine which estrogen receptor is the mediator, we subjected C3H/HeN male mice to trauma-hemorrhage (2-cm midline laparotomy and bleeding of the animals to a mean blood pressure of 35 mmHg and maintaining that pressure for 90 min) followed by resuscitation with Ringer's lactate (four times the shed blood volume). At the middle of resuscitation we subcutaneously injected ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5 microg/kg), estrogen (50 microg/kg), or ER antagonist ICI 182,780 (150 microg/kg). Two hours after resuscitation, we isolated keratinocytes, stimulated them with lipopolysaccharide for 24 h (5 microg/mL for maximum cytokine production), and measured the production of interleukin (IL)-6, IL-10, IL-12, and TNF-alpha and the activation of MAPK. Keratinocyte cytokine production markedly increased and MAPK activation occurred following trauma-hemorrhage but were normalized by administration of estrogen, PPT, and DPN. PPT and DPN administration were equally effective in normalizing the inflammatory response of keratinocytes, indicating that both ER-alpha and ER-beta mediate the salutary effects of estrogen on keratinocytes after trauma-hemorrhage.  相似文献   

18.
Adipose tissue deposition is highly responsive to estrogen; ovariectomy increases adipose deposition, and estrogen replacement reverses this. Estrogen receptor alpha (ERalpha) plays a major role in adipose tissue. ERalpha knockout (alphaERKO) mice show an increase in adipose tissue of over a 100 % compared to wild-type mice. However, alphaERKO mice undergo a 10-fold increase in 17beta-estradiol (E2), and persistent or even increased signaling through ERbeta could be a factor in obesity of alphaERKO mice. To test the hypothesis that ERbeta plays a role in adipose tissue, adult female alphaERKO mice were ovariectomized or sham-ovariectomized and fed a phytoestrogen-free diet. Ovariectomized mice were treated with vehicle or E2, and bodyweights and food consumption were measured. Mice were killed after 28 days and inguinal and parametrial fat pads collected. Sham-ovariectomized alphaERKO mice had increased body weight, ovariectomized alphaERKO mice showed a 6 % decrease, and E2 replacement restored body weight to sham levels. Fat pads of ovariectomized alphaERKO mice showed 45 % and 16 % decreases in weight and adipocyte circumference, respectively, compared to sham-ovariectomized or E2-replaced ovariectomized alphaERKO mice. Ovariectomized alphaERKO mice showed a trend towards decreased feed consumption that did not reach significance. Blood glucose levels were lower both before and after glucose injection in ovariectomized compared to sham alphaERKO mice, and E2 treatment reversed this. Insulin levels following glucose challenge were lower in ovariectomized compared to sham-ovariectomized alphaERKO mice, indicating that ovariectomy ameliorated the glucose intolerance and insulin resistance in alphaERKO mice. Immunohistochemical analysis revealed strong staining for ERbeta in adipose tissue. These observations indicate that removing E2/ERbeta signaling in alphaERKO mice by ovariectomy decreases body and fat-pad weights and adipocyte size, while improving insulin and glucose metabolism. ERbeta mediated effects on adipose tissue are opposite those of ERalpha, although E2 effects on adipose tissue are predominately through ERalpha.  相似文献   

19.
20.
Tyulmenkov VV  Klinge CM 《Steroids》2000,65(9):505-512
Antibodies are widely used to detect estrogen receptor (ER) in ER-DNA complexes in electrophoretic mobility shift assays (EMSA). We compared the specificity of antibodies raised to different regions of ERalpha or ERbeta for detecting recombinant human ERalpha (rhERalpha) and recombinant rat ERbeta (rrERbeta) when bound to a consensus estrogen response element (ERE). ERalpha-specific antibodies specifically slowed the migration of the ER-ERE complex by 32 to 84% and inhibited rhERalpha-ERE binding by 17 to 75%. None of antibodies to ERbeta supershifted rhERalpha-ERE complex. Some ERalpha-specific antibodies increased whereas some decreased rrERbeta-ERE binding. Anti-ERbeta antibodies supershifted different amounts of the rrERbeta-ERE complex. Our results indicate that supershift and inhibition of ER-ERE interaction with a specific antibody are equally reliable in the detection of rhERalpha and rrERbeta. ERalpha antibody Ab10, antisera G20 and AT3B, and ERbeta-antiserum Y19 offered the best discrimination between ERalpha and ERbeta. Comparison of the peptide sequences against which various antibodies were raised indicate directions for new ERalpha and ERbeta- specific antibody development. We conclude that a cognate ER antibody that retards the migration of the ER-ERE complex by at least 40% or inhibits ER-ERE interaction by at least 8% provides a reliable detection of a specific ER isoform in EMSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号