首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

2.
The catalyzed coupling reaction of activated alcohol and mercaptan was used for the short and efficient synthesis of 14 thioether compounds. Two types of side chains, the methyl butyl alkylamide related to the pure steroidal antiestrogen ICI 164384 and the dimethylamino ethyloxy phenyl related to the clinically used nonsteroidal antiestrogen tamoxifen, were introduced by a thioether link on two types of nuclei (triphenylethane or estradiol). The new thioether derivatives were tested to assess their relative binding affinity for the estrogen receptor and their estrogenic or antiestrogenic activity in the ZR-75-1 (ER+) cell line. The results indicate that of the three types of compounds studied, only the nonsteroidal derivatives with an alkylamide side chain possess antiestrogenic activity. In the steroidal series, displacement of the alkylamide side chain from the 7 to the 6 position produced compounds with chemical characteristics similar to ICI 164384 or EM-139 but without antiestrogenic activity. In the nonsteroidal series of compounds with an aryl side chain, compounds with estrogenic activity were obtained. One compound, a nonsteroidal derivative with a methyl butyl alkylamide side chain 20, possesses a relative binding affinity for the estrogen receptor identical to EM-139 (1.1 and 1.2%, respectively) and a relatively good antiestrogenic activity that is 10-fold lower than EM-139 (IC50 values of 250 and 25 nM, respectively). This nonsteroidal thioether with an alkylamide side chain is free of estrogenic activity.  相似文献   

3.
Boivin RP  Labrie F  Poirier D 《Steroids》1999,64(12):825-833
To develop inhibitors of steroid sulfatase without residual estrogenic activity, we have designed a series of estradiol (E2) derivatives bearing an alkan (or alkyn) amide side chain at position 17alpha. A hydrophobic alkyl group was selected from our previous study where 17alpha-octyl-E2 was found to inhibit strongly the steroid-sulfatase activity. Furthermore, it is known that an alkylamide side chain blocks the estrogen-receptor activation. Starting from ethynylestradiol, the chemical synthesis of target compounds was short and efficient with overall yields of 22-42% (3 or 4 steps). Among these compounds, N-octyl,N-methyl-3-(3',17'beta-dihydroxy-1',3',5'(10')-estratrien- 17'alpha-yl)-propanamide (15) was the most potent inhibitor, with an IC50 value of 0.08 microM for the transformation of estrone sulfate (E1S) to estrone (E1) by homogenated JEG-3 cells. N-butyl, N-hexyl, and N,N-dioctyl propanamide derivatives of E2 (IC50 values of 6.4, 2.8, and >20 microM, respectively) were less potent inhibitors than N-octyl analog 15. Furthermore, the unsaturated propynamide analog of 15 gave lower inhibition (four times) than the saturated compound. Compound 15 is also about 100-fold more effective in interacting with the enzyme than substrate E1S itself. The ability of target compounds to bind the estrogen receptor, to stimulate the proliferation of estrogen-sensitive ZR-75-1 cells, or to inhibit the E2-stimulation of ZR-75-1 cells was also evaluated. Although a mixed estrogenic/anti-estrogenic activity was obtained for tested compounds at 1 microM, no estrogenic activity was observed at 0.03 microM for 15. In conclusion, a promising inhibitor of steroid-sulfatase activity was obtained by introducing a hydrophobic octyl group in a 17alpha-propanamide side chain of E2, but further structure-activity relationships (SAR) studies are necessary to minimize the residual estrogenic activity.  相似文献   

4.
The dialkylaminoethoxy side chain in triphenylethylene antiestrogens is required for their antiestrogenic activity. Without this side chain the compounds lose their antiestrogenic activity and become essentially estrogenic. Estradiol substituted at the 17 beta-position with dialkylaminoethoxy, dialkylaminoethylamino, or dialkylaminoethylthiol were synthesized and tested for their ability to displace estradiol for its receptor. All of the derivatives tested exhibited low binding affinities to the estrogen receptor, with RBA values ranging between 0 to 1.2 (estradiol = 100). The mouse and rat uterine weight test revealed only low estrogenic activity for this class of compounds. None of the estradiol derivatives synthesized showed antiestrogenic activity.  相似文献   

5.
The biological activities of tamoxifen derivatives that contain various side chain alterations were studied using a T47D breast cancer cell growth assay in vitro. We studied the activity of various analogs to determine the important aspects of side chain composition and aryl ring positioning on antiestrogenic activity. Previous studies utilizing a rat pituitary cell prolactin synthesis assay have shown that substitution of the aminoethoxy side chain for an allyl side chain resulted in agonist activity, whereas the addition of a glyceryl side chain produced antiestrogenic activity. In the present study utilizing T47D cells, compounds with alkyl or allyl substitutions were partial agonists, as were compounds with bulky para-substituted benzyl group constituents. A tamoxifen derivative with a side chain containing an ethyl ester was antiestrogenic (IC50 = 2 x 10(-6) M) and effectively inhibited estradiol (10(-10) M) stimulation of growth. However, a compound with a short similar methyl ester-containing side chain did not possess any activity. Compounds with carbinol-containing side chains were antiestrogenic (IC50 = 2.8-3.5 x 10(-7) M). All of the compounds displaying antiestrogenic activity could be "rescued" by incubation with estradiol (10(-8) M) and therefore were not nonspecifically toxic to the cells. These results support the hypothesis that the presence of a lone pair of electrons within the side chain region of tamoxifen may be required for antiestrogenic activity. Also, nonplanar placement of the aryl ring of the triphenylethylene-type of compound is critical for potency.  相似文献   

6.
Various synthetic chemicals released to the environment can interfere with the endocrine system of vertebrates. Many of these endocrine disrupting compounds (EDCs) exhibit estrogenic activity and can interfere with sexual development and reproductive physiology. More recently, also chemicals with different modes of action (MOAs), such as antiestrogenic, androgenic and antiandrogenic EDCs, have been shown to be present in the environment. However, to date EDC-research primarily focuses on exposure to EDCs with just one MOA, while studies examining the effects of simultaneous exposure to EDCs with different MOAs are rare, although they would reflect more real, natural exposure situations. In the present study the combined effects of estrogenic and antiestrogenic EDCs were assessed by analyzing the calling behavior of short-term exposed male Xenopus laevis. The estrogenic 17α-ethinylestradiol (EE2), and the antiestrogenic EDCs tamoxifen (TAM) and fulvestrant (ICI) were used as model substances. As previously demonstrated, sole EE2 exposure (10−10 M) resulted in significant alterations of the male calling behavior, including altered temporal and spectral parameters of the advertisement calls. Sole TAM (10−7 M, 10−8 M, 10−10 M) or ICI (10−7 M) exposure, on the other hand, did not affect any of the measured parameters. If frogs were co-exposed to EE2 (10−10 M) and TAM (10−7 M) the effects of EE2 on some parameters were abolished, but co-exposure to EE2 and ICI (10−7 M) neutralized all estrogenic effects. Thus, although EDCs with antiestrogenic MOA might not exhibit any effects per se, they can alter the estrogenic effects of EE2. Our observations demonstrate that there is need to further investigate the combined effects of EDCs with various, not only opposing, MOAs as this would reflect realistic wildlife situations.  相似文献   

7.
Structure-dependent estrogen receptor alpha (ER alpha) agonist and antagonist activities of synthetic and natural estrogenic compounds were investigated in human HepG2, MDA-MB-231 and U2 cancer cell lines. Compounds used in this study include 4'-hydroxytamoxifen, ICI 182,780, bisphenol-A (BPA), 2',4',6'-trichloro-4-biphenylol (3Cl-PCB-OH), 2',3',4',5'-tetrachloro-4-biphenylol (4Cl-PCB-OH), p-t-octylphenol, p-nonylphenol, naringenin, kepone, resveratrol, and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE). Cells were transfected with a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) and either wild-type estrogen receptor alpha (ER-wt) or variants expressing activation function-1 (ER-AF1) or AF-2 (ER-AF2). The ER agonist activities of the synthetic mono and dihydroxy aromatic compounds are comparable in all three-cell lines, whereas the activities of naringenin, kepone and resveratrol are dependent on cell context and expression of wild-type or variant forms of ER alpha. In contrast, the ER antagonist activities for these compounds were highly complex and, with the exception of 3Cl-PCB-OH, all compounds inhibited E2-induced wild-type or variant ER action. Results of this in vitro study suggest that the estrogenic and antiestrogenic activity of structurally diverse synthetic and natural estrogenic compounds is complex, and this is consistent with published data that often give contradictory results for these compounds.  相似文献   

8.
9.
Estrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity. Three strategies were also devised to produce compounds with less residual estrogenic activity: (1) replacing the hydroxy group by a hydrogen at position 3 (C3); (2) adding a methoxy at C2; and (3) adding an alkylamide chain known to be antiestrogenic at C7. In order to test the inhibitory potency of the new compounds, we used the human breast cancer cell line T-47D, which exerts a strong endogenous 17beta-HSD1 activity. In this intact cell model, 16beta-m-carbamoylbenzyl-E2 (4m) emerged as a potent inhibitor of 17beta-HSD1 with an IC50 value of 44 nM for the transformation of [14C]-E1 (60 nM) into [14C]-E2 (24-h incubation). In another assay aimed at assessing the unwanted estrogenic activity, a 10-day treatment with 4m at a concentration of 0.5 microM induced some proliferation (38%) of T-47D estrogen-sensitive (ER+) breast cancer cells. Interestingly, when 4m (0.5 microM) was given with E1 (0.1 nM) in a 10-day treatment, it blocked 62% of the T-47D cell proliferation induced by E1 after its reduction to E2 by 17beta-HSD1. Thus, in addition to generating useful structure-activity relationships for the development of 17beta-HSD1 inhibitors, our study demonstrates that using such inhibitors is a valuable strategy for reducing the level of E2 and consequently its proliferative effect in T-47D ER+ breast cancer cells.  相似文献   

10.
The coupling reaction of an acetylide ion with alkyl bromide or delta-valerolactone was used to synthesize twelve 17 alpha-derivatives of ethynylestradiol having various 17 alpha-side chain lengths and, except one, having mono- or di-oxygenated function on the side chain. All compounds had low (0.01-1.79%) relative binding affinity (RBA) for the rat uterine estrogen receptor. The highest RBA were obtained for compounds 26 (1.79%), 30 (1.55%) and 19 (0.42%). The length and polarity of the side chain decreases the affinity for the estrogen receptor. The in vivo estrogenic activity was measured on mouse uterine weight and was found to range from 0 to 35%, except for compound 30 (100%). The antiuterotrophic activity was measured by inhibition of estradiol-induced stimulation of uterine weight and was found to be 39% for compound 19, 25% for compound 26 and 0% for all other compounds. These two compounds (19 and 26) possess mixed agonist and antagonist activity.  相似文献   

11.
Activity of several ribavirin analogues, viz.1-(2-hydroxyethoxymethyl)-, 1-(3-hydroxypropoxymethyl)-, 1-(4-hydroxybutoxymethyl)- and 1-(2,3-dihydroxypropyl)-1,2,4-triazole 5- and 3-carboxamides, against human adenovirus type 2 in the Hep-2 cell culture has been studied. The ether oxygen atom imitating the ribose O4' was shown to be essential for the antiviral activity. 1-(2-Hydroxyethoxymethyl)-1,2,4-triazole 3-carboxamide, a structural analogue of ribavirin in which the hydroxyl group is apparently equivalent to the ribose 5'-OH, possesses the highest activity among the compounds studied. Lengthening of the alkyl side chain reduces essentially the antiviral activity.  相似文献   

12.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

13.
7-Methoxy-4-(4-methoxybenzylidene)-2-substituted phenyl-benzopyrans I and 4-[bis-(4-methoxyphenyl)-methylene-2-substituted phenyl-benzopyrans II carrying different alkylamino residues, designed as estrogen receptor (ER) binding ligands, were successfully synthesized through the McMurry coupling reaction of substituted benzaldehyde/substituted benzophenones and 2-hydroxyphenyl-7-methoxy-chroman-4-one in presence of lithium aluminum hydride and titanium (IV) chloride (LAH-TiCl(4)). Self-coupling of carbonyl reactants led to the formation of several side products. The prototypes were evaluated for their relative binding affinity (RBA), as well as their estrogenic and antiestrogenic activities. High order of estrogenic activity (>50% gain) observed with compounds 3, 7a, 7b, 7c, 8, and 10a and also their partial estrogen antagonistic activity (> or =15%) at the uterine level points toward successful designing of the compounds. Compounds 4, 7a, 7b, 7c, and 10a also possessed significant anticancer activity against human adenocarcinoma cell line (MCF-7 cell line) that may be related to their estrogen-dependent action.  相似文献   

14.
Sulfation is an important conjugation reaction in the metabolism of steroids. Steroids sulfates do not interact with the appropriate hormone receptors; additionally, the presence of the charged sulfate moiety increases the aqueous solubility and excretion of most steroids. Estrogen sulfotransferase (EST) is the major form of human cytosolic ST involved in the conjugation of estrogens. EST is important in the inactivation of beta-estradiol (E2) during the luteal phase of the menstrual cycle. EST has a significantly higher affinity for the sulfation of E2 and 17alpha-ethinylestradiol (EE2) than for other potent estrogens such as diethylstilbestrol (DES) and equine estrogens. The ability of EST to sulfate these estrogenic compounds at physiologic concentrations is important in regulating their activation of the ER in estrogen responsive cells. Human Ishikawa endometrial adenocarcinoma (ISH) cells possess an estrogen receptor (ER)-regulated alkaline phosphatase (AlkPhos) which is used to assay ER activation. To study the effects of EST activity on the ER activation of different estrogenic compounds, ISH cells were stably transformed with an EST expression vector. Dose-response curves for the induction of AlkPhos activity by the different estrogenic compounds were generated with EST/ISH and control pcDNA/ISH cells. EST/ISH cells were 200-fold less sensitive to E2 and EE2 than were control cells. No differences were observed in the dose response curves for DES between EST/ISH and pcDNA/ISH cells. EST/ISH cells were approximately 3-10-fold less sensitive to the equine estrogens equilin and 17-equilin as compared to control cells. The ability of EST to decrease the ER activation of an estrogen correlates with the sulfation of these compounds at nanomolar concentrations by EST/ISH and pcDNA/ISH ISH cells. These results indicate that EST is capable of efficiently inactivating E2 and EE2 but is significantly less effective in inhibiting the ER binding of other potent estrogenic compounds.  相似文献   

15.
Six isoflavones, daidzein (4',7,-dihydroxyisoflavone), genistein (4',5,7-trihydroxyisoflavone), genistin (genistein 7-O-beta-D-glucopyranoside), isoprunetin (4',7-dihydroxy, 5-metoxyisoflavone), isoprunetin 7-O-beta-D-glucopyranoside, isoprunetin 4',7-di-O-beta-D-glucopyranoside and four flavones, luteolin (3',4',5,7-tetrahydroxyflavone), luteolin 7-O-beta-D-glucopyranoside, luteolin 4'-O-beta-D-glucopyranoside, licoflavone C (4',5,7-trihydroxy,8-isoprenylflavone) were purified from Mediterranean plants (Genista morisii and Genista ephedroides) and their estrogenic activity was assessed by a yeast reporter gene assay (Saccharomyces cerevisiae RMY326 ER-ERE). Licoflavone C showed a powerful estrogenic activity at 10(-7) M (0.0338 microg/ml) and it was 47.45% than 10(-8) M 17beta-estradiol (0.00272 microg/ml). The estrogenicity of this flavone was found to be comparable to the activity showed by genistein at 10(-6) M (0.27 microg/ml). This study points out that a glucose substituent in flavones and isoflavones modulates the hormone-like activity in a different way. Isoflavone aglycones showed a more estrogenic activity than the corresponding glucosides. Conversely, the glucosidation made estrogenic the flavone luteolin and the position of substitution differently influenced the estrogenic activity of compounds.  相似文献   

16.
In most developing countries, 70-80% of the population still resort to traditional medicine for their primary health care. This medicine utilises medicinal plants which are traditionally taken as concoction and infusion. The root and stem bark of Millettia griffoniana (Leguminosae), has been reported to contain isoflavonoids, alkaloids, and diterpenoids. The possible benefit of some bioactive isoflavones derived from M. griffoniana prompted us to screen them for estrogenic activity. Six isoflavones and coumarin derived from M. griffoniana (bail) namely, compound nos. 1-6 (Fig. 1) were tested for their potential estrogenic activities in three different estrogen receptor alpha (ERalpha)-dependent assays. In a yeast-based ERalpha assay, all test substances and 17beta-estradiol as endogenous agonist, showed a significant induction of beta-galactosidase activity. The test compounds at the concentration of 5 x 10(-6) M could achieve 59-121% of the beta-galactosidase induction obtained with 10(-8) M 17beta-estradiol (100%). In the reporter gene assay based on stably transfected MCF-7 cells (MVLN cells), the estrogen responsive induction of luciferase was also stimulated by the M. griffoniana isoflavones. In Ishikawa cells, all substances exhibited estrogenic activity revealed by the induction of alkaline phosphatase (AlkP) activity. The estrogenic activities of isoflavones from M. griffoniana could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ERalpha. Although all substances showed estrogenic effects, 4'-methoxy-7-O-[(E)-3-methyl-7-hydroxymethyl-2,6-octadienyl]isoflavone (7-O-DHF), Griffonianone C (GRIF-C), and 3',4'-dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octadienyl]isoflavone (7-O-GISO) were found to be the most potent of tested substances. In summary, estrogenic activities of the isoflavones derived from M. griffoniana were described for the first time using reporter gene assays and the estrogen-inducible AlkP Ishikawa model.  相似文献   

17.
The effects of toremifene, a new triphenylethylene derivative, on the uterus and DMBA-induced mammary tumors in rats were compared to tamoxifen. The ability of toremifene to compete with [3H]estradiol for cytoplasmic estrogen receptor from rat uterus was similar to tamoxifen, the IC50 being 26 and 23 microM respectively. In immature intact rats the two compounds, administered orally for three consecutive days, had similar intrinsic partial estrogenic efficacy, at 50 mg/kg, about 40% of that of estradiol benzoate (EB). However, at doses less than or equal to 10 mg/kg, the estrogenic effect of toremifene was seen at doses about 40 times higher than that of tamoxifen. The two compounds, administered together with a standard dose of EB, expressed the same maximal antiestrogenic efficacy (about 65% inhibition) at 50 mg/kg. However, the minimal effective antiestrogenic dose of toremifene was about 10 times that of tamoxifen and the ratio between antiestrogenic/estrogenic properties was favourable to toremifene. The duration of the antiestrogenic (antiuterotrophic) effect of a single oral dose (10 mg/kg) of the two compounds proved similar: at least 4 days in intact rats and 3 days in ovariectomized rats. In DMBA-induced tumor bearing rats toremifene was administered p.o., 6 times/week for 4 weeks at 0.08, 0.4, 2, 10 and 50 mg/kg. It was effective at the doses of 2, 10 and 50 mg/kg, inducing 39, 35 and 46% tumor regressions. The activity of toremifene at the minimal effective dose of 2 mg/kg was then compared with that of tamoxifen given at the same dose level. The compounds had comparable activity (47 vs 44% tumor regressions).  相似文献   

18.
A series of estrone and estradiol derivatives having an N-butyl,methyl heptanamide side chain at C6-position were synthesized, tested as inhibitors of type 1 17beta-HSD and assessed for their possible estrogenic activity. A better type 1 17beta-HSD inhibition was obtained for the 6beta-side chain orientation over 6alpha; the C17-alcohols are more potent inhibitors than the corresponding ketones; introducing a 2-methoxy group decreased the inhibitory potency; and the replacement of a C-S bond by a C-C bond in the C6beta-side chain is not detrimental to inhibition. Interestingly, the new inhibitors were also found less estrogenic than the lead compound in two breast cancer cell lines, T-47D and MCF-7.  相似文献   

19.
20.
Adult Xenopus laevis were exposed in vivo to ethinylestradiol, tamoxifen, methyldihydrotestosterone and flutamide as (anti)estrogenic and (anti)androgenic compounds, respectively, for four weeks at a concentration of 10(-8) M and to Lambro river water, a polluted river from Italy. Effects of the treatments were analysed by mRNA expression of retinol-binding protein (RBP), transferrin (TF), transthyretin (TTR) and vitellogenin (VTG) in the liver of male and female X. laevis, to analyse the potential of these genes to detect endocrine disrupting compounds (EDC) with different modes of action. In addition, plasma VTG and sex steroid levels, estradiol-17beta (E(2)) and testosterone (T), were analysed. Sex steroids were depressed by ethinylestradiol in both sexes whereas tamoxifen increased E(2) in females. The induction of VTG protein plasma levels was more pronounced at the protein level compared to hepatic VTG mRNA expression in response to estrogenic treatment but VTG mRNA expression detected both, estrogenic and antiestrogenic EDC. The mRNA expression of TF was decreased by estrogenic and increased by antiestrogenic treatment while TTR mRNA expression was down-regulated and RBP mRNA up-regulated by estrogenic exposure. The other treatments did not affect the mRNA expression of the examined genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号