首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The use of vectors that are designed to allow positive selection of recombinants facilitates cloning experiments in E. coli. Using kid, a lethal gene of the R1 plasmid parD locus, we generated pKID vectors leading to high selective efficiency of recombinants (greater than 90%). The E. coli bacterial host used to propagate these vectors produces the Kis protein, the natural antagonist of Kid. This new positive-selection system exhibits the same efficiency as the original ccdB-based selection vectors, pKIL (4). We also show that the ccdB and kid systems are independent. This property increases the potential of plasmidic poison-antidote systems for genetic applications and opens the door to a generation of new vectors containing the two selection systems.  相似文献   

3.
4.
Summary We used the hybrid plasmid pAS8 in order to conduct the genetic analysis of RP4 plasmid. The presence of two replicons in the hybrid plasmid permitted to expand the spectrum of deletion mutants of RP4 isolated, which are capable to autonomous replication. The shortening of the hybrid plasmid was achieved by P22 transduction, by induction of deletion mutants using mitomycin C, as well as by selection of Tra- mutants on the basis of resistance of cells to P-specific phages. These techniques have lead to isolation of clones possessing different combinations of plasmid resistance determinants.Comparison of phenotypic characteristics of deletion plasmids pAS9, pAS10, pAS11, pAS12 and pAS10-2 permitted to propose the map for pAS8 plasmid with the following sequence of markers: trakan-ColE1-amp-tet...Heteroduplex analysis of deletion mutants of pAS8 permitted to construct a physical map and to elaborate in greater detail the functional map of RP4 plasmid. The correlation between the ability of mutants to replicate in polA (TS) strain at nonpermissive conditions and the length of the deleted segment permitted to map rep genes of RP4 on a region with coordinates 9.8–17.3 kb. A relationship between the manifestation of incompatibility of mutants with Inc P-1 plasmids and the length of deletions points out that inc genes are located on DNA region with coordinates 2.1–9.8 kb. The analysis of replication of deletion mutants and the manifestation of incompatibility just as of the data about the size of appropriate deletions permitted to make the conclusion about the functional and genetic independence of the replication control and incompatibility control in RP4 plasmid.  相似文献   

5.
6.
7.
The eclipse period (the time period during which a newly replicated plasmid copy is not available for a new replication) of plasmid R1 in Escherichia coli was determined with the classic Meselson-Stahl density-shift experiment. A mini-plasmid with the wild-type R1 replicon and a mutant with a thermo-inducible runaway-replication phenotype were used in this work. The eclipses of the chromosome and of the wild-type plasmid were 0.6 and 0.2 generation times, respectively, at temperatures ranging from 30 degrees C to 42 degrees C. The mutant plasmid had a similar eclipse at temperatures up to 38 degrees C. At 42 degrees C, the plasmid copy number increased rapidly because of the absence of replication control and replication reached a rate of 350-400 plasmid replications per cell and cell generation. During uncontrolled replication, the eclipse was about 3 min compared with 10 min at controlled replication (the wild-type plasmid at 42 degrees C). Hence, the copy-number control system contributed significantly to the eclipse. The eclipse in the absence of copy-number control (3 min) presumably is caused by structural requirements: the covalently closed circular plasmid DNA has to regain the right degree of superhelicity needed for initiation of replication and it takes time to assemble the initiation factors.  相似文献   

8.
9.
The P-group plasmids RP1, RP4, RK2, R68 and R68.45 were analyzed by the following restriction endonucleases:BamHI,BglII,EcoRI,HindIII,PstI,PvuII,SalI, andSmaI. No differences between RP1, RP4, and RK2 were found, and the plasmid R68.45 was found to contain a direct duplication of an existing DNA sequence in R68. Our map of RK2 differs from the published map of RK2 in the corresponding region of the R68 map that is duplicated in R68.45.  相似文献   

10.
Summary A method for Tn1 insertion mutagenesis in Escherichia coli has been developed using pTH10, a mutant plasmid of RP4 temperature-sensitive for maintenance. The mutagenesis involves three steps. Firstly, from strains carrying pTH10 showing resistance to the antibiotics kanamycin, tetracycline, and ampicillin at 30° C but not at 42° C, clones are isolated resistant to kanamycin at 42° C. Such temperature-independent, drug resistant clones probably carry pTH10 integrated into the host chromosome. Secondly, they are cultivated at 30° C. At this temperature segregants carrying pTH10, which has been excised from the host chromosome, accumulate. Thirdly, to cure such segregants of autonomous pTH10, they are cultivated at 42° C. By these procedures, clones free of pTH10, but carrying Tn1 insertions on the host chromosome, were obtained.About 3% of the clones carrying Tn1 insertions were auxotrophic. Distribution of auxotrophic mutations was not random, indicating the existence of preferential integration sites of Tn1 on the host chromosome. The frequency of precise excision of Tn1 was less than 10-10.The pTH10 plasmid has a wide host range among Gram-negative bacteria and thus may serve as a excellent vector for insertion mutagenesis of Tn1 in many Gram-negative bacterial species.  相似文献   

11.
12.
Summary We provide evidence that a mutation which derepresses an autoregulated system that is located in the vicinity of the basic replicon of R1, stabilizes the ParA- and ParB- miniplasmid of R1 pKN1562, without increasing its copy number. The system, which we have called ParD, maps inside the 1.45-kb PstI-EcoRI fragment that is adjacent to the origin of replication of the plasmid. Two protiens whose expression is coordinated are components of the system. The sequence of the PstI-EcoRI fragment was obtained. The wild-type ParD system determines in cis a basal but detectable stability.  相似文献   

13.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

14.
N J Grinter 《Plasmid》1981,5(3):267-276
In vitro recombination was used to generate RP4 plasmids with an inserted restriction fragment of bateriophage λ. In some cases the λ DNA also carried the insertion sequence IS1. Comparisons were made between the abilities of these plasmids to mobilize the Escherichia coli K-12 chromosome in different genetic backgrounds. RP4-borne IS1 acting alone promoted chromosome transfer but with an efficiency 1% of that resulting from more extensive plasmid-chromosome homology. A recA mutation in the donor depressed the mobilization frequency below the level of detection. Correlation of the direction of chromosome transfer and the orientation of the cloned λ DNA allowed the direction of RP4 transfer to be determined. Studies on recombinants showed that in general they also acquired an intact, autonomous plasmid, suggesting the process of mobilization by RP4 may differ in certain features from chromosome transfer by F.  相似文献   

15.
Summary Construction of translational fusions betwen the repA gene of plasmid R 1 (required for replication) and the lacZ gene has allowed a quantitative analysis of expression of this gene. It is suggested that the replication of R 1 is controlled by two replication control functions acting as inhibitors of repA expression.  相似文献   

16.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

17.
Plasmids are autonomously replicating DNA molecules that are present in defined copy numbers in bacteria. This number may for some plasmids be very low (2-5 per average cell). In order to be stably inherited, replication and partitioning of the plasmid have to be strictly controlled. Plasmids carry genetic information for both processes. In the present paper we summarize what is known about the replication control system of one low-copy-number plasmid, R1, belonging to the FII incompatibility group. We do so because the FII group seems to be one of the best understood examples with respect to genetics, molecular biology, and physiology of the replication control system. The paper is not a classical review, but rather an essay in which we discuss the aspects of replication control that we regard as being important.  相似文献   

18.
19.
The mechanistic basis of control of replication initiation of plasmid R6K was investigated by addressing the following questions. What are the biochemical attributes of mutations in the pi initiator protein that caused loss of negative control of initiation? Did the primary control involve only initiator protein-ori DNA interaction or did it also involve protein-protein interactions between pi and several host-encoded proteins? Mutations at two different regions of the pi-encoding sequence individually caused some loss of negative control as indicated by a relatively modest increase in copy number. However, combinations of the mutation P42L, which caused loss of DNA looping, with those located in the region between the residues 106 and 113 induced a robust enhancement of copy number. These mutant forms promoted higher levels of replication in vitro in a reconstituted system consisting of 22 purified proteins. The mutant forms of pi were susceptible to pronounced iteron-induced monomerization in comparison with the WT protein. As contrasted with the changes in DNA-protein interaction, we found no detectable differences in protein-protein interaction between wild type pi with DnaA, DnaB helicase, and DnaG primase on one hand and between the high copy mutant forms and the same host proteins on the other. The DnaG-pi interaction reported here is novel. Taken together, the results suggest that both loss of negative control due to iteron-induced monomerization of the initiator and enhanced iteron-initiator interaction appear to be the principal causes of enhanced copy number.  相似文献   

20.
Summary The region of plasmid R1 containing the replication control genes has been sequenced using the Maxam-Gilbert method. The nucleotide sequence of two small PstI restriction fragments (a total of about 1,000 base pairs) was determined for the wildtype R1 plasmid as well as for two different copy mutants. It was found that one copy mutant has a single base substitution in the fragment which was recently shown to harbor an important inc/cop gene (Molin and Nordström 1980). Furthermore, the sequence indicates the presence of a structural gene that codes for a polypeptide of size 10,500 daltons. Possible gene products predicted from the nucleotide sequences and their role in replication control are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号