首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A role for microfilaments and microtubules in the secretion of α-amylase is indicated since cytochalasin B and colchicine inhibited the stimulation of α-amylase release by epinephrine (30 or 15 μM) but only cytochalasin B inhibited the stimulation by N6, O2′ dibutyryl adenosine 3′,5′monophosphate (1.0 mM). It was necessary to incubate the parotid tissue slices in the presence of cytochalasin B (1 hr.) or colchicine (4 hrs.) before adding the agonist in order to see the inhibitory effects.  相似文献   

2.
Cultured steroidogenic cells derived from the adrenal glands of duck embryos were used to study changes in the distribution of actin associated with the corticotropic responsiveness. Actin-containing components were identified by rhodamine-phalloidin staining. The actin in most of the unstimulated cells occurred as stress fibers that either ran parallel throughout the cell or were present as domains of parallel fibers at angles to one another. When incubated in Krebs-Henseleit buffer containing 1–24 ACTH, the cells released approximately equal amounts of corticosterone and aldosterone. Incubation of the cells in buffer containing cytochalasin D caused the cells to lose their stress fibers, and the actin became distributed at the periphery in what appeared to be fragments of stress fibers and clumps of fibrous material in the central cytoplasm. Although cytochalasin D did not affect the basal output of corticosterone and aldosterone, the 1–24 ACTH-induced rates of both hormones were suppressed significantly. After the cells had been washed in unadulterated buffer, the normal distribution of actin stress fibers was restored and the cells responded normally when incubated in buffer containing 1–24 ACTH. These results suggest that the actin components of the cytoskeleton are important determinants of corticotropin-induced steroidogenic responsiveness.  相似文献   

3.
Summary Postovulatory follicles of the tilapia, Oreochromis mossambicus, were incubated with graded doses of salmon gonadotropin to identify the steroid hormones released by this tissue. In addition, the effects of either cytochalasin B or colchicine on steroid hormone release were studied. After the incubation, the tissue was examined by electron microscopy. Postovulatory follicles released testosterone and estradiol-17B in a dose-dependent manner with gonadotropin. There was no detectable release of progesterone or 17a-OH-progesterone. When stimulated with high doses of gonadotropin, the steroidogenic cells showed an increase in smooth endoplasmic reticulum, Golgi complexes, and lipid droplets. Also, microfilaments became arranged in orderly bundles and were found close to the numerous secretory vesicles and lipid droplets. Upon incubation with gonadotropin and either colchicine or cytochalasin B, the cells still appeared steroidogenic, but the filaments were not organized nor associated with vesicles or lipid droplets. Release of steroid hormone decreased significantly. Also in these tissues, vesicles were no longer numerous in the apical region of the granulosa cells, but were located primarily near smooth endoplasmic reticulum and Golgi complexes. This suggests that disruption of the cytoskeleton results in reduced steroid hormone synthesis or release.  相似文献   

4.
The role of microtubules in adrenal steroidogenesis was examined in vitro, using frog interrenal tissue. Adrenal dice from Rana ridibunda were perifused with amphibian culture medium and the effect of various antimicrotubular drugs was studied. The amounts of corticosterone and aldosterone released in the effluent perifusate were radioimmunoassayed using specific antisera. Administration of colchicine, nocodazole, and vinblastine (10(-5) M) did not affect spontaneous secretion of corticosterone and aldosterone. These results indicated that, in contrast to microfilaments which play an important role in spontaneous steroidogenesis, the microtubular system is not required for basal corticosteroid secretion. However, vinblastine (10(-5) M) was responsible for a marked decrease in ACTH-induced stimulation of corticosterone and aldosterone production. Conversely, vinblastine did not significantly alter the response of interrenal tissue to dibutyryl cAMP, forskolin and NaF, indicating that the microtubules are involved in an early step of ACTH action, namely at the level of the receptor subunit.  相似文献   

5.
J R Lymangrover  R Martin 《Life sciences》1978,23(11):1193-1199
The administration of the ionophore A23187 to superfused rat adrenal cortical tissue slices resulted in a significant elevation in corticosterone production. Removal of calcium from the superfusion medium prevented this ionophore induced corticosteroidogenesis. Threshold amounts of ionophore potentiated the steroidogenic action of 1 mU but not 10 mU ACTH under in vitro conditions. This potentiation by ionophore on ACTH stimulated steroid production was not observed when calcium was omitted from the superfusing medium. Potentiation by the ionophore on dbCAMP or CAMP stimulated steroid formation was not observed for any dose of cyclic nucleotide employed.  相似文献   

6.
Nitric oxide (NO) has been found to modulate the response of rat, bovine and human adrenocortical cells to corticotropic factors. The aim of the present study was to investigate the possible involvement of NO in the control of corticosteroid secretion in the frog Rana ridibunda. Histochemical studies using the NADPH-diaphorase reaction and immunohistochemical labeling with antibodies against NO synthase (NOS) revealed that NOS is exclusively expressed in chromaffin cells. The NO donor sodium nitroprusside (SNP) and the NO synthase inhibitor Nw-nitro- -arginine ( -NO2Arg) did not modify the spontaneous production of corticosterone and aldosterone by perifused adrenal slices. Similarly, -NO2Arg had no effect on the secretory responses induced by ACTH, angiotensin II (AII) and endothelin-1 (ET-1). In contrast, SNP significantly inhibited the stimulatory effects of ACTH, AII and ET-1 on corticosterone and aldosterone secretion. These data provide the first evidence for a modulatory role of NO on adrenocortical cell activity in amphibians.  相似文献   

7.
ACTH release under the effect of median eminence extract (ME) was studied in both incubation and superfusion experiments. ACTH content of the incubation medium was measured by radioimmunoassay or by the corticosterone production of trypsinisolated adrenocortical cells. Dopamine at low concentration led to a slight increase of basal ACTH secretion, while at higher concentration failed to influence ACTH release. The dopamine agonist CB-154 produced a significant rise of ACTH secretion and augmented the ME extract-induced increase of pituitary ACTH release. Chlorpromazine and haloperidol suppressed basal ACTH secretion and inhibited the ME extract-induced release. The simultaneous administration of CB-154 and haloperidol into the incubation medium prevented the haloperidol-induced inhibition of ACTH release. The observations indicate that dopaminergic receptors play a role in the activation of CRF-induced ACTH secretion under in vitro experimental conditions.  相似文献   

8.
Prolactin stimulates and potentiates adrenal steroid secretion in vitro   总被引:1,自引:0,他引:1  
Prolactin, alone and in combination with ACTH, was tested for its ability to release steroids from rat adrenocortical slices superfused in vitro. The hormone possessed weak activity alone (minimal responsive dose = 1 U), but was able to potentiate the ACTH-stimulated corticoid release at much lower doses (significant response over ACTH alone at 0.01 U prolactin). This latter dosage was calculated to be within the physiologic range of prolactin in blood. Analysis of individual steroids in superfusate by RIA revealed that aldosterone release was most sensitive to prolactin, followed by corticosterone, androstenedione, and progesterone. We conclude that prolactin is an adrenocortical secretagogue of physiological relevance in the rat, and that it could play a role in enhancing the action of ACTH to acutely release steroids.  相似文献   

9.
Summary There are two regions of steroidogenic cells in the duck adrenal gland. An outer, subcapsular zone (SCZ), consisting of cells with irregularly shaped nuclei, shows relatively little smooth endoplasmic reticulum and mitochondria with shelf-like cristae. This region surrounds the inner zone (IZ) of the gland which is comprised of smaller cells with rounded nuclei, a more abundant smooth endoplasmic reticulum and mitochondria with tubular cristae. When samples of tissue from these distinct regions of the gland are superfused in vitro with media containing concentrations of 1–24 ACTH ranging from 100 to 1000 ng per ml (0.034 to 0.34 M) the steroidogenic cells in both zones release corticosterone in a dose-dependent manner. The dose-responsiveness of both the SCZ and the IZ cells over this range is a complex quadratic function of the 1–24 ACTH concentration in the medium and the semilogarithmic linear portions of the dose-response curves are restricted to a narrow midrange of ACTH concentrations. Throughout the dose-response range, however, the steroidogenic cells of the IZ are more responsive to corticotropic stimulation than are the cells of the SCZ. The cells of the two zones are further distinguished by their responses to a challenge for a second time with medium containing 1–24 ACTH; the responses of the IZ cells to a second challenge were greater than those of the SCZ cells, and at a high concentration of ACTH the SCZ slices showed no significant second response.This work was supported by a grant from the National Science Foundation (PCM 79-15777) to James Cronshaw and W.N. Holmes  相似文献   

10.
A variety of effects of A23187 have been reported as its actions on adrenocortical steroidogenesis. This diversity probably resulted because of differences in the protocol of applying the Ca++ ionophore. We continue to observe a dose-dependent potentiation by the ionophore on ACTH-stimulated corticosterone secretory activity of superfused rat adrenocortical slices. This effect was eliminated or reversed if the tissue was pretreated with A23187 for 30 min prior to secretagogue application. The quality of the ionophore effect also depends on the submaximal dose of ACTH employed.  相似文献   

11.
The mechanism of matrix vesicle (MV) formation by growth plate chondrocytes in primary cell culture was assessed both by using drugs which interfere with assembly or disassembly of microfilaments and microtubules, as well as by comparison of the composition of chondrocyte microvilli with MV. Cytochalasin D, which is known to inhibit assembly of actin microfilaments, was found to stimulate the release of alkaline phosphatase-rich MV. This stimulatory effect was confirmed by studies with [3H]palmitate- and 32P-prelabeled cells which showed that cytochalasin D enhanced the release of labeled MV. In contrast, phalloidin, which blocks disassembly of microfilaments, suppressed release of cellular alkaline phosphatase into MV. The phospholipid composition of vesicles released by cells treated with cytochalasin D and phalloidin was virtually identical with that of the controls. In contrast, colchicine, which interferes with the assembly of microtubules, was found to cause fragmentation of the cells, producing large vesicles significantly different in lipid composition from MV. Microscopic studies revealed that cytochalasin D caused marked rounding and retraction of the cells, with evidence of actin withdrawal from the cell periphery. This led to cell surface blebbing and formation of small zeiotic bodies at the tips of cell processes. In contrast, phalloidin enhanced and stabilized the actin network within the cells. Chemical analysis of microvilli prepared from isolated chondrocytes revealed high levels of alkaline phosphatase and a phospholipid composition almost identical to MV. Electrophoretic profiles of microvillar proteins were again like that of MV, except for the presence of high levels of actin. This cytoskeletal protein was nondetectable in MV. Taken together with the effects of the drugs, the data indicate that cell surface microvilli are the precursors of MV and that retraction of the supporting microfilament network is essential for the release of these structures.  相似文献   

12.
Bilateral olfactory bulbectomy (OB) has drastic biochemical and behavioral effects and is often associated with an increase in plasma corticosterone concentrations. This experiment examined the effects of OB on adrenocorticotropin (ACTH) and corticosterone release under basal and stress conditions and on proopiomelanocortin (POMC) gene expression. Bulbectomy potentiated hypophysal ACTH and adrenal corticosterone release induced by ether stress but had no effect on ACTH release under basal conditions, despite a significant increase of circulating corticosterone. POMC gene expression was stronger (+60%) in OB rats than in sham-operated rats. These results suggest that olfactory bulbectomy substantially altered the negative feed-back exerted by glucocorticoids on anterior pituitary corticotropic cells in the male rat.  相似文献   

13.
The possible relations between cell volume, microfilaments and microtubules networks have been studied in cultured mice fibrosarcoma cells of line T2 and rat pheochromocytoma cells of line PC12. The obtained results show that: 1. Changes in volume induced by application of hypo-osmotic medium are concomitant with a modification in the organization of the microfilaments network as visualized by immunocytochemistry. The microtubules lattice is not affected in these conditions. 2. Disruption of the microfilaments network by cytochalasin B causes a significant decrease in cell volume in isosmotic conditions. It also deeply affects the volume regulation response of cells swollen in hypo-osmotic media. 3. Disruption of the microtubules lattice by colchicine has no effect on volume in isosmotic conditions nor on the volume regulation that follows application of hypo-osmotic shock. The possible role of microfilaments in cell volume control is discussed.  相似文献   

14.
Drugs that interact with microtubules (colchicine and vinblastine) and microfilaments (cytochalasin B) partially inhibited cell growth and motility of Tritrichomonas foetus. Parasites incubated with these substances became rounded and cell division was blocked. Neither colchicine nor vinblastine disrupted the microtubules that form the peltar-axostylar system. Any one of these drugs interfered with the net negative surface charge of T. foetus as evaluated by determination of the cellular electrophoretic mobility (EPM). The decrease in the EPM of cytochalasin B-treated cells was caused by dimethylsulfoxide, which was used as solvent. Untreated cells as well as cytochalasin B-treated cells showed a uniform distribution of anionic sites on the plasma membrane as seen with cationized ferritin particles. In cells treated with colchicine or vinblastine the anionic sites were distributed in patches. These results are discussed in terms of participation of labile cytoplasmic microtubules and microfilaments in the control of the distribution of anionic site-containing macromolecules located on the cell surface of T. foetus.  相似文献   

15.
We have examined the role of cytoskeletal elements with respect to the formation and maintenance of viroplasmic centers (VCs) in Tipula iridescent virus (TIV)-infected mosquito Aedes albopictus (C6/36) cells. Filamentous systems consisting of microtubules and microfilaments were detected by immunofluorescence microscopy. Inoculation of cells with TIV resulted in an alteration of microtubule and microfilament organization whether or not VCs developed. The formation of short arrays of microtubules induced by taxol or the depolymerization of microtubules by colchicine, as observed by immunofluorescence microscopy, had no apparent effect upon the development of VCs as detected by Hoechst staining and electron microscopy. The dissolution of the actin-containing filamentous system by cytochalasin B also had no effect upon development. We conclude from these results that microtubules and microfilaments are not involved in the formation or maintenance of VCs in TIV-infected A. albopictus (C6/36) cells.  相似文献   

16.
The aim of this study was to investigate the effects of ACTH, phytoestrogens (genistein, daidzein, biochanin A and coumestrol), and animal estrogens (estradiol and estrone) on corticosterone secretion by isolated adrenocortical cells of the ganders in breeding (April) and nonbreeding seasons (July). ACTH stimulated corticosterone output in the breeding season. In July (photorefractoriness and postbreeding molt) ACTH had no effect on corticosterone production. Coumestrol reduced corticosterone secretion by the cells obtained in nonbreeding season. Other examined phytoestrogens did not affect corticosterone production. Estrogens showed differentiated effects. Estradiol stimulated the corticosterone output in breeding season; estrone inhibited corticosterone release in July. The season can probably affect sensitivity of isolated gander adrenal cells, especially to ACTH. It seems that goose adrenocortical cells, in contrast to the mammalian cells, can be weakly sensitive to phytoestrogens.  相似文献   

17.
Incubation of isolated rat hepatocytes with phalloidin, cytochalasins (which, respectively, stabilize and destabilize actin microfilaments), or colchicine (which inhibits polymerization of microtubules), resulted in a dose-dependent inhibition of triacyglycerol secretion (an index of very low density lipoprotein secretion). Upon removal of drugs from incubation media, the inhibitory effect of cytochalasin D on triacylglycerol secretion was reversible, while such was not the case for phalloidin. When used at maximal concentrations, the combined presence of phalloidin + colchicine or cytochalasin D + colchicine had additive inhibitory effects upon hepatic triacylglycerol secretion, which was virtually blocked; this was not the case for phalloidin + cytochalasin D. These experiments support the concept that microfilaments and microtubules may have complementary functions for the hepatic secretion of very low density lipoproteins.  相似文献   

18.
The role of the cellular cytoskeletal system of microtubules and microfilaments on gonadotropin-stimulated progesterone production by isolated rat luteal cells has been investigated. Exposure of luteal cells to human choriogonadotropin resulted in a stimulation of cyclic AMP (4-7-fold) and progesterone (3-4-fold) responses.l Incubation of cells with the microfilament modifier cytochalasin B inhibited the gonadotropin-induced steroidogenesis in a dose- and time-dependent manner. The effect of cytochalasin B on basal production of steroid was less pronounced. Cytochalasin B also inhibited the accumulation of progesterone in response to lutropin, cholera enterotoxin, dibutyryl cyclic AMP and 8-bromo cyclic AMP. The inhibition of steroidogenesis by cytochalasin B was not due to (a) inhibition of 125I-labelled human choriogonadotropin binding to luteal cells, (b) inhibition of gonadotropin-stimulated cyclic AMP formation or (c) a general cytotoxic effect and/or inhibition of protein biosynthesis. Cytochalasin D, like cytochalasin B, inhibited gonadotropin- and 8-bromo cyclic AMP-stimulated steroidogenesis. Although cytochalasin B also blocked the transport of 3-O-methyl-glucose into luteal cells, cytochalasin D was without such an effect. Increasing glucose concentration in the medium, or using pyruvate as an alternative energy source, failed to reverse the inhibitory effect of cytochalasin B. The anti-microtubular agent colchicine failed to modulate synthesis and release of progesterone by luteal cells in response to human choriogonadotropin. These studies suggest that the cellular microfilaments may be involved in the regulation of gonadotropin-induced steroidogenesis. In contrast, microtubules appear to be not directly involved in this process.  相似文献   

19.
Summary Morphogenesis of mitochondria in male germ cells in cultivated cytocysts begins in early prophase I at which time mitochondria thicken and become ordered along the spindle apparatus during meiosis. At the end of the second meiotic division they aggregate to form the Nebenkern.In the presence of colchicine or cytochalasin B mitochondria are able to begin differentiation, although the correct course of meiosis is not guaranteed. In medium supplemented with colchicine they undergo normal thickening but do not aggregate, in a pattern known from untreated cultures. This may indicate that microtubules are involved in the aggregation process of mitochondria as colchicine is known to inhibit microtubule formation. Moreover, in cell cultures treated with cytochalasin B mitochondrial aggregation does occur; it is concluded that microfilaments, which are sensitive to cytochalasin B, do not play a detectable role in the aggregation of mitochondria.  相似文献   

20.
Treatment of confluent Swiss 3T3 cells in serum-free medium with colchicine, a drug known to depolymerize microtubules, results in a dose-dependent increase in both released and cell-associated plasminogen activator levels. Other anti-microtubule drugs (vinblastine and nocodazole) are also active in stimulating plasminogen activator expression. In contrast, cytochalasin B, a microfilament-disruptive drug, has no effect. In addition, treatment with colchicine, vinblastine or nocodazole, but not cytochalasin B, also results in a dose-dependent induction of DNA synthesis in both confluent and quiescent sparse 3T3 cells in the absence of serum. Furthermore, colchicine treatment also mediates a marked morphologic change. Thus, disruption of microtubules may be sufficient to render 3T3 cells in an “activated” state characterized by morphologic alteration, enhanced plasminogen activator expression and induction of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号