首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
DNA polymerases achieve high-fidelity DNA replication in part by checking the accuracy of each nucleotide that is incorporated and, if a mistake is made, the incorrect nucleotide is removed before further primer extension takes place. In order to proofread, the primer-end must be separated from the template strand and transferred from the polymerase to the exonuclease active center where the excision reaction takes place; then the trimmed primer-end is returned to the polymerase active center. Thus, proofreading requires polymerase-to-exonuclease and exonuclease-to-polymerase active site switching. We have used a fluorescence assay that uses differences in the fluorescence intensity of 2-aminopurine (2AP) to measure the rates of active site switching for the bacteriophage T4 DNA polymerase. There are three findings: (i) the rate of return of the trimmed primer-end from the exonuclease to the polymerase active center is rapid, >500 s1; (ii) T4 DNA polymerase can remove two incorrect nucleotides under single turnover conditions, which includes presumed exonuclease-to-polymerase and polymerase-to-exonuclease active site switching steps and (iii) proofreading reactions that initiate in the polymerase active center are not intrinsically processive.  相似文献   

2.
Berdis AJ 《Biochemistry》2001,40(24):7180-7191
The mechanism and dynamics of translesion DNA synthesis were evaluated using primer/templates containing a tetrahydrofuran moiety designed to mimic an abasic site. Steady-state kinetic analysis reveals that the T4 DNA polymerase preferentially incorporates dATP across from the abasic site with 100-fold higher efficiency than the other nucleoside triphosphates. Under steady-state conditions, the catalytic efficiency of dATP incorporation across from an abasic site is only 220-fold lower than that across from T. Surprisingly, misincorporation across from T is favored 4-6-fold versus replication across an abasic site, suggesting that the dynamics of the polymerization cycle are differentially affected by formation of aberrant base pairs as opposed to the lack of base-pairing capabilities afforded by the abasic site. Linear pre-steady-state time courses were obtained for the incorporation of any dNTP across from an abasic site, indicating that chemistry or a step prior to chemistry is rate-limiting for the polymerization cycle. Low elemental effects (<3) measured by substituting the alpha-thiotriphosphate analogues for dATP, dCTP, and dGTP indicate that chemistry is not solely rate-limiting. Single-turnover experiments yield kpol/Kd values that are essentially identical to kcat/Km values and provide further evidence that the conformational change preceding chemistry is rate-limiting. Extension beyond an A:abasic mispair is approximately 20-fold and 100-fold faster than extension beyond a G:abasic mispair or C:abasic mispair, respectively. Extension from the G:abasic or A:abasic site mispair generates significant elemental effects (between 5 and 20) and suggests that chemistry is at least partially rate-limiting for extension beyond either mispair.  相似文献   

3.
The DNA polymerase induced after infection of Escherichia coli by bacteriophage T7 can exist in two forms. One distinguishing property of Form I, the elimination of nicks in double-stranded DNA templates, strongly suggests that this form of the polymerase catalyzes limited DNA synthesis at nicks, resulting in displacement of the downstream strand. In this paper, we document this reaction by a detailed characterization of the DNA product. DNA synthesis on circular, duplex DNA templates containing a single site-specific nick results in circular molecules bearing duplex branches. Analysis of newly synthesized DNA excised from the product shows that the majority of the branches are less than 500 base pairs in length and that they arise from a limited number of sites. The branches have fully base-paired termini but are attached by two noncomplementary DNA strands that have a combined length of less than 30 nucleotides. The product molecules are topologically constrained as a result of the duplex branch. DNA sequence analysis has provided an unequivocal structure of one such product molecule. We conclude that strand displacement synthesis catalyzed by Form I of T7 DNA polymerase is terminated by a template-switching reaction. We propose two distinct models for template-switching that we call primer relocation and rotational strand exchange. Strand displacement synthesis catalyzed by Form I of T7 DNA polymerase effectively converts T7 DNA circles that are held together by hydrogen bonds in their 160-nucleotide-long terminal redundancy to T7-length linear molecules. We suggest that strand displacement synthesis catalyzed by T7 DNA polymerase is essential in vivo to the processing of a T7 DNA concatemer to mature T7 genomes.  相似文献   

4.
The synthesis of the DNA polymerase of bacteriophage T4 is autogenously regulated. This protein (gp43), the product of gene 43, binds to a segment of its mRNA that overlaps its ribosome binding site, and thereby blocks translation. We have determined the Kd of the gp43-operator interaction to be 1.0 x 10(-9) M. The minimum operator sequence to which gp43 binds consists of 36 nucleotides that include a hairpin (containing a 5 base-pair helix and an 8 nucleotide loop) and a single-stranded segment that contains the Shine-Dalgarno sequence of the ribosome binding site. In the distantly related bacteriophage RB69 there is a remarkable conservation of this hairpin and loop sequence at the ribosome binding site of its DNA polymerase gene. We have constructed phage operator mutants that overproduce gp43 in vivo, yet are unchanged for in vivo replication rates and phage yield. We present data that show that the replicative and autoregulatory functions are mutually exclusive activities of this polymerase, and suggest a model for gp43 synthesis that links autoregulation to replicative demand.  相似文献   

5.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

6.
7.
Isolation of bacteriophage T4 DNA polymerase mutator mutants   总被引:5,自引:0,他引:5  
More than 20 new bacteriophage T4 DNA polymerase mutants have been isolated by a procedure designed to select mutants with high spontaneous mutation rates. Some of the mutants produce the highest mutation frequencies that have been observed in T4 thus far. The design of the selection procedure allows for the isolation of mutator mutants that preferentially induce certain types of replication errors, and some of the mutator mutants have mutational specificities different from wild-type. The new mutants are clustered at just two sites in the DNA polymerase gene, and this result confirms an earlier observation.  相似文献   

8.
A DNA polymerase induced by bacteriophage T7   总被引:8,自引:0,他引:8  
  相似文献   

9.
The fidelity of DNA replication is achieved in a multiplicative process encompassing nucleobase selection and insertion, removal of misinserted nucleotides by exonuclease activity, and enzyme dissociation from primer/templates that are misaligned due to mispairing. In this study, we have evaluated the effect of altering these kinetic processes on the dynamics of translesion DNA replication using the bacteriophage T4 replication apparatus as a model system. The effect of enhancing the processivity of the T4 DNA polymerase, gp43, on translesion DNA replication was evaluated using a defined in vitro assay system. While the T4 replicase (gp43 in complex with gp45) can perform efficient, processive replication using unmodified DNA, the T4 replicase cannot extend beyond an abasic site. This indicates that enhancing the processivity of gp43 does not increase unambiguously its ability to perform translesion DNA replication. Surprisingly, the replicase composed of an exonuclease-deficient mutant of gp43 was unable to extend beyond the abasic DNA lesion, thus indicating that molecular processes involved in DNA polymerization activity play the predominant role in preventing extension beyond the non-coding DNA lesion. Although neither T4 replicase complex could extend beyond the lesion, there were measurable differences in the stability of each complex at the DNA lesion. Specifically, the exonuclease-deficient replicase dissociates at a rate constant, k(off), of 1.1s(-1) while the wild-type replicase remains more stably associated at the site of DNA damage by virtue of a slower measured rate constant (k(off) 0.009s(-1)). The increased lifetime of the wild-type replicase suggests that idle turnover, the partitioning of the replicase from its polymerase to its exonuclease active site, may play an important role in maintaining fidelity. Further attempts to perturb the fidelity of the T4 replicase by substituting Mn(2+) for Mg(2+) did not significantly enhance DNA synthesis beyond the abasic DNA lesion. The results of these studies are interpreted with respect to current structural information of gp43 alone and complexed with gp45.  相似文献   

10.
Since bacteriophage T4 DNA polymerase is unable to use duplex DNA molecules as templates (B. Alberts, J. Barry, M. Brittner, M. Davies, H. Hama-Inaba, C. C. Liu, D. Mace, L. Moran, C. F. Morris, J. Piperno, and N. Sinha, 1977, in Nucleic Acids and Protein Recognition, Vogel, H. J., ed., pp. 31–63, Academic Press, New York), a technique involving synchronous and uniquely primed synthesis of DNA on the single-stranded fd DNA by the T4 DNA polymerase has been developed to probe regions exhibiting secondary structure on this genome. As the polymerase proceeds, the template secondary structure acts as a kinetic barrier to delay the continuous chain extension catalyzed by this enzyme. These kinetic pause sites can be mapped by denaturing agarose gel electrophoresis of replication intermediates and used to generate a secondary structure map. Using this method, we are able to establish a list including at least seven plausible stable helical regions in fd DNA. Two of the most stable secondary structures have been mapped near fd sequence positions 3350 and 5650, respectively. The latter has been reported to be the region where fd DNA replication begins (C. P. Gray, R. Sommer, C. Polke, E. Beck, and H. Schaller, 1978, Proc. Nat. Acad. Sci. USA, 75, 50–53). However, the biological function associated with the former has yet to be investigated. Following a two-state model, we estimate the first-order rate constant for progression through the duplex regions near position 5650 in fd DNA to be about 0.042 min?1 for fd DNA synthesis by the T4 DNA polymerase under our reaction conditions. A 7.5-fold increase in this rate constant is obtained upon the addition of the T4 DNA helix destabilizing protein (i.e., gene 32 protein). The general pattern of our secondary structure map agrees well with a computer search for duplex regions on the fd genome. Both the stability and the size of a stable secondary structure at a particular position on the fd template determine the time that the newly made DNA molecules spend at that site. A structure with a stem of less than 8 base pairs does not interrupt significantly the procession of the T4 DNA polymerase during the process of fd DNA synthesis.  相似文献   

11.
12.
Analysis of inhibitors of bacteriophage T4 DNA polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage T4 DNA polymerase was inhibited by butylphenyl nucleotides, aphidicolin and pyrophosphate analogs, but with lower sensitivities than other members of the B family DNA polymerases. The nucleotides N2-(p-n-butylphenyl)dGTP (BuPdGTP) and 2-(p-n-butylanilino)dATP (BuAdATP) inhibited T4 DNA polymerase with competitive Ki values of 0.82 and 0.54 microM with respect to dGTP and dATP, respectively. The same compounds were more potent inhibitors in truncated assays lacking the competitor dNTP, displaying apparent Ki values of 0.001 and 0.0016 microM, respectively. BuPdGTP was a substrate for T4 DNA polymerase, and the resulting 3'-BuPdG-primer:template was bound strongly by the enzyme. Each of the non-substrate derivatives, BuPdGDP and BuPdGMPCH2PP, inhibited T4 DNA polymerase with similar potencies in both the truncated and variable competitor assays. These results indicate that BuPdGTP inhibits T4 DNA polymerase by distinct mechanisms depending upon the assay conditions. Reversible competitive inhibition predominates in the presence of dGTP, and incorporation in the absence of dGTP leads to potent inhibition by the modified primer:template. The implications of these findings for the use of these inhibitors in the study of B family DNA polymerases is discussed.  相似文献   

13.
M C Kricker  K R Tindall 《Gene》1989,85(1):199-204
We present a simple and convenient protocol for the direct sequencing of bacteriophage T4 genomic DNA. The method utilizes the thermostable DNA polymerase from Thermus aquaticus (Taq) and 32P-end-labeled oligodeoxyribonucleotide primers to produce extension products that allow the analysis of at least 200 nucleotides (nt) on a single sequencing gel. Single-nt changes in the template were easily detectable following an overnight exposure of the autoradiograms. Comparison of sequences from fully modified T4 DNA containing glucosylated hydroxymethyldeoxycytosine or from templates containing cytosine showed little difference in sequence clarity. These techniques considerably simplify the molecular analysis of T-even bacteriophages and should be compatible with automated sequencing methods which employ 5'-end-labeled primers.  相似文献   

14.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

15.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

16.
17.
The 3' to 5' exonuclease activity of bacteriophage T7 DNA polymerase (gene 5 protein) can be inactivated selectively by reactive oxygen species. Differences in the enzymatic properties between the two forms are exploited to show by a chemical screen that modification of a histidine residue reduces selectively the exonuclease activity. In vitro mutagenesis of the histidine at residue 123, and of the neighboring residues, results in varying reduction of the exonuclease activity, including mutant enzymes that have no detectable exonuclease activity; as a consequence their polymerase activity is increased up to 9-fold. T7 phage containing the mutant genes have a greatly reduced burst size and demonstrate up to a 14-fold increase in the spontaneous mutation rate.  相似文献   

18.
We developed a system for DNA packaging of isolated bacteriophage T4 proheads in vitro and studied the role of prohead expansion in DNA packaging. Biologically active proheads have been purified from a number of packaging-deficient mutant extracts. The cleaved mature prohead is the active structural precursor for the DNA packaging reaction. Packaging of proheads requires ATP, Mg2+ and spermidine, and is stimulated by polyethylene glycol and dextran. Predominantly expanded proheads (ELPs) are produced at 37 degrees C and predominantly unexpanded proheads (ESPs) are produced at 20 degrees C. Both the expanded and unexpanded proheads are active in DNA packaging in vitro. This is based on the observations that (1) both ESPs and ELPs purified by chromatography on DEAE-Sephacel showed DNA packaging activity; (2) apparently homogeneous ELPs prepared by treatment with sodium dodecyl sulfate (which dissociates ESPs) retained significant biological activity; (3) specific precipitation of ELPs with anti-hoc immunoglobulin G resulted in loss of DNA packaging activity; and (4) ESPs upon expansion in vitro to ELPs retained packaging activity. Therefore, contrary to the models that couple DNA packaging to head expansion, in T4 the expansion and packaging appear to be independent, since the already expanded DNA-free proheads can be packaged in vitro. We therefore propose that the unexpanded to expanded prohead transition has evolved to stabilize the capsid and to reorganize the prohead shell functionally from a core-interacting to a DNA-interacting inner surface.  相似文献   

19.
The uvsX gene product is essential for DNA repair and general recombination in T4 bacteriophage. The ability of UvsX protein to catalyze the homologous pairing of single-stranded DNA (ssDNA) with double-stranded DNA (dsDNA) in vitro was examined by electron microscopic (EM), nitrocellulose filter binding, and gel electrophoretic methods. Optimal joining was observed at ratios of UvsX protein:ssDNA of 2 nucleotides/protein monomer. At this level, the ssDNA was fully covered by UvsX protein as seen by EM, while the dsDNA appeared protein-free. Using this stoichiometry, the pairing of circular ssDNA with homologous supertwisted dsDNA was found to produce a high frequency of complexes in which a supertwisted dsDNA molecule was joined to a UvsX protein-ssDNA filament over a distance of less than 100 base pairs. These joints were labile to deproteinization and must have been paranemic. Pairing of linear ssDNA containing buried homology to the dsDNA produced identical structures. Pairing of fully homologous linear ssDNA and supertwisted dsDNA yielded D-loop joints (plectonemic) as seen by EM following deproteinization. Both the paranemic and the plectonemic joints were at sites of homology, as demonstrated by restriction cleavage of the complexes. Visualization of the joined complexes prior to deproteinization showed that 50% of the joints had the architecture of the paranemic joints, whereas in the remainder, a topologically relaxed dsDNA circle merged with the UvsX protein-ssDNA filament for a distance of 450 base pairs. The structure of the filament was not visibly altered in this region. These observations are similar, but not identical, to findings in parallel studies utilizing the RecA protein of Escherichia coli.  相似文献   

20.
The protein encoded by gene 45 of T4 bacteriophage (gene 45 protein or gp45), is responsible for tethering the catalytic subunit of T4 DNA Polymerase to DNA during high-speed replication. Also referred to as a sliding DNA clamp, gp45 is similar in its function to the processivity factors of bacterial and eukaryotic DNA polymerases, the beta-clamp and PCNA, respectively. Crystallographic analysis has shown that the beta-clamp and PCNA form highly symmetrical ring-shaped structures through which duplex DNA can be threaded. Gp45 shares no sequence similarity with beta-clamp or PCNA, and sequence comparisons have not been able to establish whether it adopts a similar structure. We have determined the crystal structure of gp45 from T4 bacteriophage at 2.4 A resolution, using multiple isomorphous replacement. The protein forms a trimeric ring-shaped assembly with overall dimensions that are similar to those of the bacterial and eukaryotic processivity factors. Each monomer of gp45 contains two domains that are very similar in chain fold to those of beta-clamp and PCNA. Despite an overall negative charge, the inner surface of the ring is in a region of positive electrostatic potential, consistent with a mechanism in which DNA is threaded through the ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号