首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipase-catalyzed acylglycerol synthesis with fatty acids of different chain length is studied. Measured ester mole fractions at equilibrium are compared with calculated mole fractions. For these calculations the computer program TREP (Two-phase Reaction Equilibrium Prediction) is used. This program is based on the UNIFAC group contribution method and is developed for nondilute two-phase reaction systems.With one set of equilibrium constants, namely 1.3, 0.8, and 0.6 for monoester, diester, and triester synthesis, respectively, the equilibrium position of the reaction between glycerol and all saturated fatty acids with a chain length from 6 to 18 and oleic acid (cis-9-octadecenoic acid) can be calculated. Deviations, expressed as the ratio between calculated and measured ester mole fractions, usually were between 0.7 and 1.2. In the presence of solvents, the deviations of the monoester mole fractions were higher and rose up to 3. Without addition of a solvent, the ester mole fractions at equilibrium are dependent on the fatty acid chain length. With the short-chain hexanoic acid, the monoester mole fraction is the highest ester mole fraction, while for the long-chain oleic acid, the diester mole fraction is the highest one. The ester mole fractions become independent on the chain length of the fatty acid with a solvent added in a sufficient high concentration. Both reactions, with saturated and unsaturated C(18) fatty acids, lead to the same equilibrium position. The program TREP is found to make good predictions of the equilibrium amounts of ester and fatty acid. However, systematic deviations arise between measured and calculated amounts of water and glycerol in the organic phase. The calculated water and glycerol amounts are always lower than the measured ones. These deviations seem to be highest in nonpolar media and are probably due to deficiencies in the UNIFAC calculation method. Some preliminary experiments show the effect of the choice of solvent on the reaction rates. In polar solvents, the monoester production rate is enhances by a factor of 1.5 as compared to the reaction rate in a system without solvent. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The equilibrium position in lipase mediated esterification of various fatty acids and butanol was studied. The influence of the chain length and the presence of unsaturations in the fatty acids on the equilibrium position was measured and predicted. To predict equilibrium position the program TREP extended (TREPEX) based on the UNIFAC group contribution method was used. Using an equilibrium constant of 35, calculated on the basis of thermodynamic activities, the equilibrium position between butanol and saturated and/or unsaturated fatty acids with different chain lengths can be predicted. The ester mole fraction at equilibrium increases with the fatty acid chain length, and for fatty acids with the same carbon number, the highest values are found for unsaturated fatty acids. For reaction systems containing two saturated fatty acids, a slightly higher mole fraction is obtained for the fatty acid with the higher chain length, while for mixtures consisting of saturated and unsaturated fatty acids, the mole fractions of the unsaturated esters are lower than those of the saturated ones, regardless the chain length of the fatty acid. These experimental results are in good agreement with the calculations with TREPEX.  相似文献   

3.
The solvent effect on the equilibrium position of the transesterification reaction of hexanol with ethyl acetate catalyzed by a lipase has been investigated in a variety of non-polar and polar solvents - and binary mixtures. The results obtained indicate that the solvent effect on the equilibrium conversion is very small as compared to that for the direct esterification reactions.

Equilibrium conversions were then predicted using the equilibrium constant for the reaction obtained from Gibbs free energy of formation information for reactants and products in combination with the UNIFAC activity coefficient model. A solvent independent equilibrium conversion was obtained, which was in good agreement with the observed average value for all solvents. This indicates that UNIFAC provides satisfactory estimates of the activity coefficients but its group contribution structure does not allow the prediction of the small differences in conversion among the solvents examined.

Finally plots of these conversions versus the solvent octanol/water partition coefficient or the solubility of water in the solvent, that provide the correct trend in direct esterification reactions, did not achieve the same for transesterification.  相似文献   

4.
Predictions may be made for the influence of solvent choice on the equilibrium position of biocatalyzed reactions, based on data for the liquid-liquid distribution of the reactants. The most reliable predictions are probably for dilute systems, based on partition coefficients or correlations derived from them. The effective equilibrium constant for esterification reactions is predicted to alter by more than four orders of magnitude on changing between different water-immiscible solvents. The equilibrium constant correlates well with the solubility of water in the solvent, and is most favorable for synthesis in the least polar solvents (aliphatic hydrocarbons). Similar effects seem to apply for other reactions, including oxidation of alcohols and hydrolysis of chlorides. Predictions can be made for nondilute systems using the UNIFAC system of group contributions, but the reliability of these is more questionable.  相似文献   

5.
This paper presents a new approach for predicting solvent effects on esterification reactions of industrial importance in the field of biocatalysis. The COSMO-RS method has been used to calculate the activity coefficients of the chemical species involved in various reactions, carried out in different solvents. For comparison we also used the traditional UNIFAC method. Three lipase-catalyzed esterifications were considered: (1) 1-dodecanoic acid with menthol in n-hexane, n-heptane, cyclohexane, 2,2,4-trimethylpentane, toluene, acetonitrile, and 2-methyl-2-butanol; (2) 1-dodecanoic acid and 1-dodecanol in n-hexane, n-heptane, cyclohexane, 2,2,4-trimethylpentane, and toluene; and (3) glycerol and n-octanoic acid in acetonitrile, benzene, and toluene and in the neat reaction mixture (without any solvent). Predicted activities were used to calculate the thermodynamic equilibrium ratio. This should be independent of medium, and the variation in COSMO-RS values is at most 9-fold (corresponding to a DeltaG degrees of about 5.5 kJ/mol, which would still be a very useful prediction) and often only 2-fold (corresponding to less than 2 kJ/mol or 0.5 kcal/mol, therefore comparable with experimental error). UNIFAC is weaker, especially when important roles are played by conformational freedom, intramolecular interactions, strong polar effects, and charge distribution of molecules in the mixture. The relative percent deviations from the mean of equilibrium constants in different solvents range between 17 and 49 for COSMO-RS versus 32 to 65 for UNIFAC. The COSMO-RS method opens up new perspectives for the development of theoretical models for solvent selection with general applicability.  相似文献   

6.
The solvent effect on the equilibrium position and the initial rate of esterification of 1-hexanol with acetic acid catalyzed by a lipase has been experimentally investigated. A variety of non-polar and polar solvents have been considered and the results obtained indicate that the solvent effect on the equilibrium conversion is very important compared to that for transesterification reactions. A theoretically sound methodology using the group-contribution UNIFAC model for the prediction of solvent effects on the equilibrium position of enzymatic reactions is presented and it is applied to the reaction of 1-hexanol with acetic acid as well as to a similar reaction from the literature. The results obtained are better than those from empirical methods proposed in the literature such as correlations with the octanol-water partition coefficient of the solvent, as well as the solubility of water in the solvent. Moreover, the proposed methodology can be used for the determination of the equilibrium constant of the reaction. For the prediction of the solvent effect on the initial rate of enzymatic reactions it is found that it is more accurately determined using the product of the activities of the reactants, which can be predicted by the UNIFAC model, than the octanol-water partition coefficient of the solvent or the solubility of water in the solvent.  相似文献   

7.
The solvent effect on the equilibrium position and the initial rate of esterification of 1-hexanol with acetic acid catalyzed by a lipase has been experimentally investigated. A variety of non-polar and polar solvents have been considered and the results obtained indicate that the solvent effect on the equilibrium conversion is very important compared to that for transesterification reactions. A theoretically sound methodology using the group-contribution UNIFAC model for the prediction of solvent effects on the equilibrium position of enzymatic reactions is presented and it is applied to the reaction of 1-hexanol with acetic acid as well as to a similar reaction from the literature. The results obtained are better than those from empirical methods proposed in the literature such as correlations with the octanol-water partition coefficient of the solvent, as well as the solubility of water in the solvent. Moreover, the proposed methodology can be used for the determination of the equilibrium constant of the reaction. For the prediction of the solvent effect on the initial rate of enzymatic reactions it is found that it is more accurately determined using the product of the activities of the reactants, which can be predicted by the UNIFAC model, than the octanol-water partition coefficient of the solvent or the solubility of water in the solvent.  相似文献   

8.
The synthesis of N-acetyl tryptophan phenylethyl ester in organic media is catalyzed by suspended agarose beads with multipoint covalently attached chymotrypsin. A dilute aqueous phase is trapped within the gel beads and may be manipulated separately from the organic phase. The equilibrium position becomes more favorable as the solvent polarity decreases, with K(eq) increasing 38 times between 2-butanone and 1,1,1-trichloroethane. The more apolar solvents also give faster kinetics. Addition of cosolvents (up to 10% dimethylformamide or 20% acetonitrile) does not affect the rate but does substantially reduce the equilibrium yield, presumably also by making the organic phase more polar. With trichloroethane as solvent the enzyme appears to be kinetically saturated with 1M phenylethanol. Doubling this concentration also does not cause the expected increase in equilibrium conversion, probably again because K(eq) is reduced in the more polar organic phase. Increased temperature raises the reaction rate as expected but has little effect on the equilibrium. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources.  相似文献   

10.
The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.  相似文献   

11.
The insolubility of nitrile substrates in aqueous reaction mixture decreases the enzymatic reaction rate. We studied the interaction of fourteen water miscible organic solvents with immobilized nitrile hydrolyzing biocatalyst. Correlation of nitrilase function with physico-chemical properties of the solvents has allowed us to predict the enzyme behavior in such non-conventional media. Addition of organic solvent up to a critical concentration leads to an enhancement in reaction rate, however, any further increase beyond the critical concentration in the latter leads to the decrease in catalytic efficiency of the enzyme, probably due to protein denaturation. The solvent dielectric constant (epsilon) showed a linear correlation with the critical concentration of the solvent used and the extent of nitrile hydrolysis. Unlike alcohols, the reaction rate in case of aprotic solvents could be linearly correlated to solvent log P. Further, kinetic analysis confirmed that the affinity of the enzyme for its substrate (K (m)) was highly dependent upon the aprotic solvent used. Finally, the prospect of solvent engineering also permitted the control of enzyme enantioselectivity by regulating enantiomer traffic at the active site.  相似文献   

12.
(Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Effects of various process conditions on (Z)-3-hexen-1-yl caproate synthesis employing germinated rapeseed lipase acetone powder in organic solvent were investigated. Rapeseed lipase catalyzed ester formation more efficiently with non-polar compared to polar solvents despite high enzyme stability in both types of solvents. Maximum ester yield (90%) was obtained when 0.125 M (Z)-3-hexen-1-ol and caproic acid were reacted at 25 °C for 48 h in the presence of 50 g/L enzyme in heptane. Enzyme showed little sensitivity towards aw with optimum yield at 0.45, while added water did not affect ester yield. Esterification reduced by increasing molecular sieves (>0.0125%, w/v). The highest yields of caproic acid were obtained with isoamyl alcohol (93%) followed by butanol and (Z)-3-hexen-1-o1 (88%) respectively reflecting the enzyme specificity for straight and branched chain alcohols. Secondary alcohols showed low reactivity, while tertiary alcohol had either very low reactivity or not esterified at all. A good relationship has been found between ester synthesis and the solvent polarity (log P value); while no correlation for the effect of solvents on residual enzyme activity was observed. It may be concluded that germinated rapeseed lipase is a promising biocatalyst for the synthesis of valuable green flavor note compound. The enzyme also showed a wide range of temperature stability (5–50 °C).  相似文献   

13.
The effects of water on enzyme (protein) hydration and catalytic efficiency of enzyme molecules in organic solvents have been analyzed in terms of the thermodynamic activity of water, which has been estimated by the NRTL or UNIFAC equations. When the amount of water bound to the enzyme was plotted as a function of water activity, the water adsorption isotherms obtained from the water-solvent liquid mixtures were similar to the reported water-vapor adsorption isotherms of proteins. The water adsorption of proteins from the organic media was not significantly dependent on the properties of the solvents or the nature of the proteins. It is also shown that there is a linear relationship between the logarithm of the enzyme reaction rate and water activity. However, the dependence of the enzyme reaction rate on water activity was found to be different depending on the properties of the solvent. The relationship between water activity and other solvent parameters such as solvent hydrophobicity and the solubility of water in the solvent is also discussed.  相似文献   

14.
A theoretical kinetic model has been developed in order to describe the enzyme reaction in organic solvents. In this model the hydration of the enzyme molecule was examined and the equilibrium kinetic constants expressed in terms of thermodynamic activity. Analysis of a proposed kinetic model shows that the enzyme reaction rate in organic solvents is determined by two factors: substrate solvation and enzyme hydration, which are determined by the activity coefficient of the substrate and the water activity of the reaction media, respectively. The activity coefficient of the substrate and the water activity have been calculated using the UNIFAC equation to analyze the effects of organic solvents on the rate of enzyme reaction, and the results were compared with experimental data. Predictions of the proposed model were found to be in good agreement with previous experimental observations.  相似文献   

15.
The enantioselective esterification of racemic ibuprofen, catalyzed by a Candida cylindracea lipase, was studied in a water-in-oil microemulsion (AOT/isooctane). By using n-propanol as the alcohol, an optimal W(0) ([H(2)O]/[AOT] ratio) of 12 was found for the synthesis of n-propyl-ibuprofenate at room temperature. The lipase showed high preference for the S(+)-enantiomer of ibuprofen, which was esterified to the corresponding S(+)-ibuprofen ester. The R(-)-ibuprofen remained unesterified in the microemulsion. The calculated enantioselectivity value (E) for S-ibuprofen ester was greater than 150 (conversion 0.32). The enzyme activities of n-alcohols with different chain lengths (3-12) were compared, and it appeared that short- (propanol and butanol) and long-chained (decanol and dodecanol) alcohols were better substrates than the intermediate ones (pentanol, hexanol, and octanol). However, unlike secondary and tertiary alcohols, all of the tested primary alcohols were substrates for the lipase. The reversible reaction (i.e., the hydrolysis of racemic ibuprofen ester in the microemulsion) was also carried out enantioselectively by the enzyme. Only the S form of the ester was hydrolyzed to the corresponding S-ibuprofen. The reaction yield was, however, only about 4% after 10 days of reaction. The corresponding yield for the esterification of ibuprofen was about 35% (10 days). The high enantioselectivity displayed by the lipase in the microemulsion system was seen neither in a similar esterification reaction in a pure organic solvent system (isooctane) nor in the hydrolysis reaction in an aqueous system (buffer). The E value for S-ibuprofen ester in the isooctane system was 3.0 (conversion 0.41), and only 1.3 for S-ibuprofen in the hydrolysis reaction (conversion 0.32). The differences in enantioselectivity for the lipase in various systems are likely due to interfacial phenomena. In the microemulsion system, the water in which the enzyme is dissolved is separated from the solvent by a layer of surfactant molecules, thus creating an interface with a relatively large area. Such interfaces are not present in the pure organic solvent systems (no surfactant) nor in aqueous systems. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
A newly isolated strain of the yeast Saccharomyces cerevisiae is investigated for the biocatalytic reduction of ketones and the oxidation of alcohols in organic solvents. The yeast cells are immobilized by entrapment within calcium alginate beads and are found to possess the ability to stereoselectively reduce prochiral ketones and oxidize chiral alcohols to equilibrium conversions. The effect of reactant partitioning on the initial rate of the reactions is also investigated. The observed initial rates are found to vary inversely with reactant partitioning between the organic solvent and the biocatalyst beads. A kinetic model is developed to describe the initial reaction rate of hexanone reduction as a function of substrate concentration within the alginate beads.  相似文献   

17.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

18.
The kinetics of the immobilized lipase B from Candida antarctica have been studied in organic solvents. This enzyme has been shown to be slightly affected by the water content of the organic media, and it does not seem to be subject to mass transfer limitations. On the other hand, some evidence indicates that the catalytic mechanism of reactions catalyzed by this lipase proceeds through the acyl-enzyme intermediate. Moreover, despite the fact that the immobilization support dramatically enhances the catalytic power of the enzyme, it does not interfere with the intrinsic solvent effect. Consequently, this enzyme preparation becomes optimum for studying the role played by the organic solvent in catalysis. To this end, we have measured the acylation and deacylation individual rate constants, and the binding equilibrium constant for the ester, in several organic environments. Data obtained show that the major effect of the organic solvent is on substrate binding, and that the catalytic steps are almost unaffected by the solvent, indicating the desolvation of the transition state. However, the strong decrease in binding for hydrophilic solvents such as THF and dioxane, compared to the rest of solvents, cannot be easily explained by means of thermodynamic arguments (desolvation of the ester substrate). For this reason, data have been considered as an indication of the existence of an unknown step in the catalytic pathway occurring prior to formation of the acyl-enzyme intermediate.  相似文献   

19.
The kinetic patterns and parameters of 12 alcoholic organic solvents of different classes inhibiting thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester (Z-Phe-Phe-OMe) in aqueous organic one-phase reaction system have been determined. All alcohols showed a linear mixed type inhibition. A kinetic model of inhibition is suggested. It was presumed that alcohols interact with substrate in the active site of thermolysin.  相似文献   

20.
The reactions of triethanolamine and four other tertiary amino alcohols with six active ester substrates were studied in the pH range 6–10 at 30°C. The reaction products were in all cases the respective O-acyl-amino alcohols. Analysis of the effects of substituents in the leaving group as well as in the acyl moiety of the substrates showed that the ester product was formed by direct attack of the nucleophilic hydroxyl group. Comparison with reactions of tertiary amines with the same substrates supports this conclusion. The reactions of tertiary amino alcohols were also compared with those of zwitterionic quaternary amino alcohols and 3-quinuclidinol, a “rigid” tertiary amino alcohol. On the basis of these comparisons, it is proposed that one of the pathways for the predominant effect of the neutral species of tertiary amino alcohols involves intramolecular general base assistance by the tertiary amino group to the nucleophilic attack of the hydroxylic oxygen on the substrate. The contribution of this pathway to the rate of reaction is evaluated.In several systems the first product of the reaction, an O-acyl-amino alcohol, undergoes relatively rapid deacylation, the overall reaction being thus hydrolysis of active esters, catalyzed by the amino alcohol via an acylation-deacylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号