首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant plasma membrane H+ -ATPase is activated by the binding of 14-3-3 proteins to its extreme C-terminal amino acids (YTV) and phosphorylation of the penultimate threonine (YpTV) is necessary for this interaction in vivo. However, in the presence of the fungal toxin fusicoccin (FC), binding of 14-3-3 proteins occurs independently of phosphorylation but still involves the YTV motif. Since FC exclusively binds to the complex consisting of both 14-3-3 homologs and the C-terminal domain of the H+ -ATPase, the toxin was used as a tool to reveal potential protein-protein interaction sites in the enzyme's C terminus. We performed in vitro interaction studies by applying various C-terminal parts of the H+ -ATPase PMA2 from Nicotiana plumbaginifolia expressed as glutathione S-transferase fusion peptides in E. coli. Interestingly, the PMA2 region encompassing residues 905-922 is implicated in FC-dependent binding of 14-3-3 homologs. Recently, part of this region has been shown to contribute to the autoinhibitory action of the PMA2 C terminus. Site-directed mutagenesis of individual amino acids localized within this region resulted in a drastic decrease in FC-dependent binding of 14-3-3 proteins. Furthermore, by expressing the corresponding mutants of PMA2 in yeast, we observed a reduced capability of the mutant enzymes to functionally replace the endogenous H+ -ATPase. Notably, the decreased activity of the mutant enzymes was accompanied by a weakened binding of yeast 14-3-3 homologs to the plasma membrane of transformed cells. Taken together, our results suggest that a section of the autoinhibitory C-terminal PMA2 region contributes to binding of activatory 14-3-3 proteins in the absence of FC.  相似文献   

2.
The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.  相似文献   

3.
The highly conserved family of 14-3-3 proteins function in the regulation of a wide variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 suggest functional isoform specificity of 14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed differences in affinity and functionality of 14-3-3 isoforms. However, the structural variation by which isoform specificity is accomplished remains unclear. Because other reports suggest that specificity is found in differential expression and availability of 14-3-3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in barley. Further, using site directed mutagenesis, we identified a single amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity. Using surface plasmon resonance, we show that the ability of 14-3-3A and the mutated version to inhibit NR activity correlates well with their binding affinity for the 14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand discrimination. These results suggest that both the availability of 14-3-3 isoforms as well as binding affinity determine isoform-specific regulation of NR activity.  相似文献   

4.
Lillo C  Kazazaic S  Ruoff P  Meyer C 《Plant physiology》1997,114(4):1377-1383
Nitrate reductase (NR) was extracted and partially purified from leaves of squash (Curcurbita maxima), spinach (Spinacia oleracea), and three transgenic Nicotiana plumbaginifolia leaves in the presence of phosphatase inhibitors to preserve its phosphorylation state. Purified squash NR showed activation by substrates (hysteresis) when prepared from leaves in the light as well as in darkness. A 14-3-3 protein known to inhibit phosphorylated spinach NR in the presence of Mg2+ decreased by 70 to 85% the activity of purified NR from dark-exposed leaves, whereas NR from light-exposed leaves decreased by 10 to 25%. Apparent lack of posttranslational NR regulation in a transgenic N. plumbaginifolia expressing an NR construct with an N-terminal deletion ([delta]NR) may be explained by more easy dissociation of 14-3-3 proteins from [delta]NR. Partially purified [delta]NR was, however, inhibited by 14-3-3 protein, and the binding constant of 14-3-3 protein (4 x 108 M-1) and the NR-inhibiting protein concentration that results in a 50% reduction of free NR (2.5 nM) were the same for NR and [delta]NR. Regulation of NR activity by phosphorylation and binding of 14-3-3 protein was a general feature for all plants tested, whereas activation by substrates as a possible regulation mechanism was verified only for squash.  相似文献   

5.
14-3-3 proteins bind their targets through a specific serine/threonine-phosphorylated motif present on the target protein. This binding is a crucial step in the phosphorylation-dependent regulation of various key proteins involved in signal transduction and cell cycle control. We report that treatment of COS-7 cells with the phosphatase inhibitor calyculin A induces association of 14-3-3 with a 55-kDa protein, identified as the intermediate filament protein vimentin. Association of vimentin with 14-3-3 depends on vimentin phosphorylation and requires the phosphopeptide-binding domain of 14-3-3. The region necessary for binding to 14-3-3 is confined to the vimentin amino-terminal head domain (amino acids 1-96). Monomeric forms of 14-3-3 do not bind vimentin in vivo or in vitro, indicating that a stable complex requires the binding of a 14-3-3 dimer to two sites on a single vimentin polypeptide. The calyculin A-induced association of vimentin with 14-3-3 in vivo results in the displacement of most other 14-3-3 partners, including the protooncogene Raf, which nevertheless remain capable of binding 14-3-3 in vitro. Concomitant with 14-3-3 displacement, calyculin A treatment blocks Raf activation by EGF; however, this inhibition is completely overcome by 14-3-3 overexpression in vivo or by the addition of prokaryotic recombinant 14-3-3 in vitro. Thus, phosphovimentin, by sequestering 14-3-3 and limiting its availability to other target proteins can affect intracellular signaling processes that require 14-3-3.  相似文献   

6.
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.  相似文献   

7.
Far-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose–phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar–phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism. The procedures described here will be valuable for determining how the phosphorylation and 14-3-3-binding status of defined target proteins change in response to extracellular stimuli.  相似文献   

8.
Proteins of the kinesin superfamily are regulated in their motor activity as well as in their ability to bind to their cargo by carboxyl-terminal associating proteins and phosphorylation. KIF1C, a recently identified member of the KIF1/Unc104 family, was shown to be involved in the retrograde vesicle transport from the Golgi-apparatus to the endoplasmic reticulum. In a yeast two-hybrid screen using the carboxyl-terminal 350 amino acids of KIF1C as a bait, we identified as binding proteins 14-3-3 beta, gamma, epsilon, and zeta. In addition, a clone encoding the carboxyl-terminal 290 amino acids of KIF1C was found, indicating a potential for KIF1C to dimerize. Subsequent transient overexpression experiments showed that KIF1C can dimerize efficiently. However, in untransfected cells, only a small portion of KIF1C was detected as a dimer. The association of 14-3-3 proteins with KIF1C could be confirmed in transient expression systems and in untransfected cells and was dependent on the phosphorylation of serine 1092 located in a consensus binding sequence for 14-3-3 ligands. Serine 1092 was a substrate for the protein kinase casein kinase II in vitro, and inhibition of casein kinase II in cells diminished the association of KIF1C with 14-3-3gamma. Our data thus suggest that KIF1C can form dimers and is associated with proteins of the 14-3-3 family.  相似文献   

9.
cdc25C induces mitosis by activating the cdc2-cyclin B complex. The intracellular localization of cyclin B1 is regulated in a cell cycle-specific manner, and its entry into the nucleus may be required for the initiation of mitosis. To determine the cellular localization of cdc25C, monoclonal antibodies specific for cdc25C were developed and used to demonstrate that in human cells, cdc25C is retained in the cytoplasm during interphase. A deletion analysis identified a 58-amino-acid region (amino acids 201 to 258) in cdc25C that was required for the cytoplasmic localization of cdc25C. This region contained a specific binding site for 14-3-3 proteins, and mutations in cdc25C that disrupted 14-3-3 binding also disrupted the cytoplasmic localization of cdc25C during interphase. cdc25C proteins that do not contain a binding site for 14-3-3 proteins showed a pancellular localization and an increased ability to induce premature chromosome condensation. The cytoplasmic localization of cdc25C was not altered by gamma irradiation or treatment with the nuclear export inhibitor leptomycin B. These results suggest that 14-3-3 proteins may negatively regulate cdc25C function by sequestering cdc25C in the cytoplasm.  相似文献   

10.
The binding of the 14C-labelled-ethylene and -pyrimidine moieties of 3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-1-(2-chloroethyl)-1-nitrosourea hydrochloride (ACNU) to the biological macromolecules was studied with the AH-130 hepatoma-bearing rats, suspension of AH-130 cells, and isolated nucleic acids and proteins. In all systems examined, a significant level of the binding of the [14C]ethylene of ACNU to nucleic acids, probably due to alkylation, was observed. In contrast, the extent of the binding of the [14C]-pyrimidine was negligible. When a compound lacking the 4-amino group of ACNU (deamino-ACNU) was used for the binding study, relatively higher binding of this compound than that of ACNU to [14C]lysine was observed. It was revealed, therefore, that the low binding of ACNU to proteins could be due to instantaneous depletion of an isocyanate-intermediate, according to the formation of an intramolecularly carbamoylated product with the amino-group on the pyrimidine ring of ACNU molecule during incubation. This could be the molecular basis for the low carbamoylating activity of ACNU in vivo and in vitro, and the antitumor action of ACNU would be dependent on its alkylating activity only.  相似文献   

11.
12.
14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells, which play an important role in a multitude of signaling pathways. 14-3-3 proteins bind to phosphoserine/phosphothreonine motifs in a sequence-specific manner. More than 200 14-3-3 binding partners have been found that are involved in cell cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. A phosphorylation-independent interaction has been reported to occur between 14-3-3 and a C-terminal domain within exoenzyme S (ExoS), a bacterial ADP-ribosyltransferase toxin from Pseudomonas aeruginosa. In this study, we have investigated the effect of amino acid mutations in this C-terminal domain of ExoS on ADP-ribosyltransferase activity and the 14-3-3 interaction. Our results suggest that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity, as cytotoxicity analysis reveals that substitution of this leucine significantly weakens the ability of ExoS to mediate cell death. Leucine-428 is also required for the ability of ExoS to modify the eukaryotic endogenous target Ras. Finally, single amino acid substitutions of positions 426-428 reduce the interaction potential of 14-3-3 with ExoS in vitro.  相似文献   

13.
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II.  相似文献   

14.
The phospho-site adapter protein 14-3-3 binds to target proteins at amino acid sequences matching the consensus motif Arg-X-X-Ser/Thr-X-Pro, where the serine or threonine residue is phosphorylated and X is any amino acid. The dual-specificity phosphatase CDC25B, which is involved in cell cycle regulation, contains five 14-3-3 binding motifs, but 14-3-3 preferentially binds to the motif at Ser309 in CDC25B1 (or Ser323 in CDC25B3). In the present study, we demonstrate that amino acid residues C-terminal to the 14-3-3 binding motif strongly affect the efficiency of 14-3-3 binding. Alanine substitutions at residues downstream of the Ser309 motif dramatically reduced 14-3-3 binding, although phosphorylation of Ser309 was unaffected. We also observed that binding of endogenous 14-3-3 to mutant CDC25B occurred less efficiently than to the wild type. Mutants to which 14-3-3 cannot bind efficiently tend to be located in the nucleus, although not as specifically as the alanine substitution mutant of Ser309. These results indicate that amino acid sequences C-terminal to the consensus binding site have an important role in the efficient binding of 14-3-3 to at least CDC25B, which may partly explain why some consensus sequences are inactive as 14-3-3 binding sites.  相似文献   

15.
The receptors on neuronal membranes for N-methyl-D-aspartate (NMDA), an analog of L-glutamic acid, are the focus of intensive study because of their importance in many neurophysiological and neuropathological states. Since there is very little knowledge of the molecular characteristics of the NMDA receptors, we undertook the development of methods for the solubilization and purification of proteins that form the receptor complex. Optimal conditions for solubilization of NMDA receptors from isolated synaptic plasma membranes involved the use of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) together with NH4SCN, 10% glycerol, and the nonionic detergent polyoxyethylene 10 tridecyl ether. The presence of NMDA receptors was monitored as the binding activity for the specific NMDA receptor ligand 3-((+-)-2-carboxypiperazine-4-yl)-[1,2-3H]propyl-1-phosphonic acid ([3H]CPP). Approximately 50% of membrane proteins were solubilized, and an equal quantitative recovery of [3H]CPP-binding proteins was achieved. The selectivity of [3H] CPP-binding proteins for excitatory amino acid agonists and aminophosphonocarboxylic acid antagonists remained essentially unchanged following solubilization. The effect of the NMDA receptor modulator, glycine, and of the ion channel-blocking cation Mg2+ on [3H]CPP-binding proteins was drastically altered by solubilization. Both became activators of [3H]CPP-binding sites. The NMDA receptor agonist ibotenic acid was used to develop an affinity matrix for the isolation of the NMDA receptor complex. The [3H]CPP-binding proteins were selectively eluted by the introduction of 2 mM Mg2+ in the elution buffers. This fraction was highly enriched in CPP-binding entities and in a protein of 58-60-kDa molecular size. The CPP binding activity of the proteins in this fraction was enriched by a factor of approximately 20,000 over that of brain homogenate. There was no L-[3H]glutamate binding activity associated with this fraction. Proteins interacting with glutamate, NMDA, and ibotenate were recovered in the 1 M KCl-eluted fraction. We propose that the 58-60-kDa protein is the aminophosphonocarboxylic acid antagonist-binding subunit of the NMDA receptor complex.  相似文献   

16.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

17.
The inactivation of phosphorylated nitrate reductase (NR) by the binding of 14-3-3 proteins is one of a very few unambiguous biological functions for 14-3-3 proteins. We report here that serine and threonine residues at the +6 to +8 positions, relative to the known regulatory binding site involving serine-543, are important in the interaction with GF14ω, a recombinant plant 14-3-3. Also shown is that an increase in ionic strength with KCl or inorganic phosphate, known physical effectors of NR activity, directly disrupts the binding of protein and peptide ligands to 14-3-3 proteins. Increased ionic strength attributable to KCl caused a change in conformation of GF14ω, resulting in reduced surface hydrophobicity, as visualized with a fluorescent probe. Similarly, it is shown that the 5′ isomer of AMP was specifically able to disrupt the inactive phosphorylated NR:14-3-3 complex. Using the 5′-AMP fluorescent analog trinitrophenyl-AMP, we show that there is a probable AMP-binding site on GF14ω.  相似文献   

18.
To monitor site-specific phosphorylation of spinach leaf nitrate reductase (NR) and binding of the enzyme to 14-3-3 proteins, serum antibodies were raised that select for either serine 543 phospho- or dephospho-NR. The dephospho-specific antibodies blocked NR phosphorylation on serine 543. The phospho-specific antibodies prevented NR binding to 14-3-3s, NR inhibition by 14-3-3s, NR dephosphorylation on serine 543, and did not precipitate 14-3-3s together with NR. Together, this confirms that 14-3-3s bind to NR at hinge 1 after it has been phosphorylated on serine 543. The amounts of individual NR forms were determined in leaf extracts by immunoblotting and immunoprecipitation. The phosphorylation state of NR on serine 543 increased 2-3-fold in leaves upon a light/ dark transition. Before the transition, one-third of NR was already phosphorylated on serine 543 but was not bound to 14-3-3s. Phosphorylation of serine 543 seems not to be enough to bind to 14-3-3s in leaves.  相似文献   

19.
We have shown previously that insulin-like growth factor-I or lens epithelium-derived growth factor increases the translocation of protein kinase Cgamma (PKCgamma)to the membrane and the phosphorylation of Cx43 by PKCgamma and causes a subsequent decrease of gap junction activity (Nguyen, T. A., Boyle, D. L., Wagner, L. M., Shinohara, T., and Takemoto, D. J. (2003) Exp. Eye Res. 76, 565-572; Lin, D., Boyle, D. L., and Takemoto, D. J. (2003) Investig. Ophthalmol. Vis. Sci. 44, 1160-1168). Gap junction activity in lens epithelial cells is regulated by PKCgamma-mediated phosphorylation of Cx43. PKCgamma activity is stimulated by growth factor-regulated increases in the synthesis of diacylglycerol but is inhibited by cytosolic docking proteins such as 14-3-3. Here we have identified two sites on the PKCgamma-C1B domain that are responsible for its interaction with 14-3-3epsilon. Two sites, C1B1 (residues 101-112) and C1B5 (residues 141-151), are located within the C1 domain of PKCgamma. C1B1 and/or C1B5 synthetic peptides can directly compete for the binding of 14-3-3epsilon, resulting in the release of endogenous cellular PKCgamma from 14-3-3epsilon, in vivo or in vitro, in activation of PKCgamma enzyme activity, phosphorylation of PKCgamma, in the subsequent translocation of PKCgamma to the membrane, and in inhibition of gap junction activity. Gap junction activity was decreased by at least 5-fold in cells treated with C1B1 or C1B5 peptides when compared with a control. 100 microM of C1B1 or C1B5 peptides also caused a 10- or 4-fold decrease of Cx43 plaque formation compared with control cells. The uptake of these synthetic peptides into cells was verified by using high pressure liquid chromatography and matrix-assisted laser desorption ionization time-of-flight-mass spectrometry. We have demonstrated that the activity and localization of PKCgamma are regulated by its binding to 14-3-3epsilon at the C1B domain of PKCgamma. Synthetic peptides corresponding to these regions of PKCgamma successfully competed for the binding of 14-3-3epsilon to endogenous PKCgamma, resulting in inhibition of gap junction activity. This demonstrates that synthetic peptides can be used to exogenously regulate gap junctions.  相似文献   

20.
A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号