首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain more information about how cyclic AMP mediates cell aggregation as found in some species of the cellular slime molds, we determined the maximal binding activity of cyclic AMP in different species under various environmental conditions. The binding of cyclic AMP is limited to amoebae using this cyclic nucleotide as chemotactic agent. Maximal binding activity proved to coincide with a maximal chemotactic response and to be related to the length of the period between the vegetative and the aggregative phase. Of the species studied, Dictyostelium discoideum has the highest cellular density of cyclic AMP receptors and is the most sensitive to cyclic AMP as attractant. At 15 degrees C, aggregation begins later, chemotaxis takes effect over a greater distance, and the maximal binding activity is higher than 22 degrees C. The number of cyclic AMP receptors is independent of temperature. The delay in the onset of aggregation and the increased chemotactic response in darkness is not due to a change in the maximal binding activity. The binding of cyclic AMP and its inactivation is discussed in the light of cell aggregation.  相似文献   

2.
To obtain more information about how cyclic AMP mediates cell aggregation as found in some species of the cellular slime molds, we determined the maximal binding activity of cyclic AMP min different species under various environmental conditions. The binding of cyclic AMP is limited to amoebae using this cyclic nucleotide as chemotactic agent. Maximal binding activity proved to coincide with a maximal chemotactic response and to be related to the lenght of the period between the vegetative and the aggregative phase. Of the species studied, Dictyostelium discoideum has the highest cellular density of cyclic AMP receptors and is the most sensitive to cyclic AMP as attractant.At 15°C, aggregation begins later, chemotaxis takes effect over a greater distance, and the maximal binding activity is higher than at 22°C. The number of cyclic AMP receptors is independent of temperature. The delay in the onset of aggregation and the increased chemotactic response in darkness is not due to a change in the maximal binding activity. The binding of cyclic AMP and its inactivation is discussed in the light of cell aggregation.  相似文献   

3.
An unknown substance found in bacteria (Escherichia coli) is especially effective in attracting the vegetative amoebae of the cellular slime mold, Dictyostelium discoideum. However, the aggregating amoebae are not attracted to it at all. On the other hand, the vegetative amoebae show very little chemotactic response to cyclic adenosine monophosphate (cyclic AMP), whereas the aggregating amoebae are exceptionally responsive to it. It is suggested that the new factor may be used in food seeking, whereas cyclic AMP, the chemotactic substance responsible for aggregation, is the acrasin of this species. The important point is that the amoebae are differentially stage-specific in their responses to these two chemotactic agents.  相似文献   

4.
The influence of light and different concentrations of ATP on cell aggregation in cyclic AMP sensitive (Dictyostelium mucoroides, D. purpureum) and cyclic AMP insensitive species (Polysphondylium violaceum, P. pallidum, D. lacteum) of the cellular slime molds was observed in small and in large amoebal populations.Both light and ATP (optimal concentration:10-5M) accelerated cell aggregation and increased the number of aggregating centers in large populations. For cyclic AMP sensitive species the effect of ATP in large populations was more pronounced than for the species that do not react to cyclic AMP.A possible explanation for the similar effect of light and ATP has been discussed.  相似文献   

5.
Summary Preparations of human erythrocyte membranes have been made which are in the form of sealed vesicles and which behave as osmometers on suspension in solutions of simple inorganic salts. Using these preparations the permeability of the membranes to Na+, K+, Mg2+ and Ca2+ was measured. Cyclic AMP (but not cyclic GMP) increased the permeability of the membranes to Ca2+ with a half maximal effect at a concentration of 25µm but did not affect the permeability to the other ions tested. Phosphorylation of proteins in the erthrocyte membrane lowered the permeability to Ca2+ without affecting the permeability to the other ions tested and there was a good correlation between the time course of protein phosphorylation and decrease in Ca2+ permeability.It is postulated that the system through which cyclic AMP causes an initial rapid rise in Ca2+ permeability followed by increased phosphorylation of membrane proteins and reduced Ca2+ permeability may have a widespread occurrence in biological systems and serve to control the concentration of Ca2+ in the cytoplasm.  相似文献   

6.
This work presents a unified theory for adaptation and for quiescence-excitable-oscillatory transitions in the cyclic AMP secretion system of the cellular slime mold amoeba Dictyostelium discoideum.  相似文献   

7.
Chemotactic signalling in the cellular slime mould Dictyostelium discoideum employs signalling molecules such as folate and cyclic AMP. These bind to specific cell surface receptors and rapidly trigger internal responses that induce chemotactic movement of the amoebae. Previous studies have shown that actin is polymerised within 3-5 sec of cyclic AMP or folate binding and that a peak of cyclic GMP is formed within 9-12 sec. Release of Ca2+ from intracellular stores has been implicated as a secondary messenger. Here we present evidence that D-myo-inositol 1,4,5-trisphosphate, when added to permeabilized amoebae of Dictyostelium, can mimic the action of chemoattractants on normal intact amoebae in inducing cyclic GMP formation. Our data suggest that IP3, which is known to act as an intermediary messenger between cell surface hormone receptors and release of Ca2+ from internal stores in mammalian cells, functions in a similar capacity during chemotaxis of this primitive eukaryote.  相似文献   

8.
Cyclic AMP Phosphodiesterase and its Inhibitor in Slime Mould Development   总被引:12,自引:0,他引:12  
CYCLIC adenosine-3′,5′-monophosphate (cyclic AMP) acts as a chemotactic factor causing cell aggregation in the slime mould, Dtctyosteltum discoideum1,2. Aggregation in this organism is the link between the growth phase and the second phase of development, in which cells cooperate and differentiate to form a multicellular fruiting body. The finding that cyclic AMP also mediates developmental functions other than chemotaxis3 suggests that regulation of cyclic AMP synthesis and destruction is important in the control of morphogenesis in D. discoideum.  相似文献   

9.
1. Kinetics of membrane-bound cyclic AMP phosphodiesterase of the cellular slime mold, Dictyostelium discoideum, were studied under two conditions: in the 27 000 times g sediment of cell homogenates (particle-bound phosphodiesterase) and in cell suspensions using external cyclic AMP as a substrate (cell-bound phosphodiesterase). Both methods revealed non-Michaelian kinetics with interaction coefficients less than 1. 2. The membrane-bound phosphodiesterase has a specificity different from that of the cyclic AMP receptor, also present at the cell surface. 3. The membrane-bound enzyme was solubilized by lithium 3, 5-diiodosalicylate and partially purified. In this state the non-linear kinetics were still retained; however, the enzyme was not inhibited by the D. discoideum inhibitor, unlike the cell-bound phosphodiesterase in vivo. This indicates that both enzymes share an inhibitor binding site and that this site is cryptic in the cell-bound state. 4. Production of periodic cyclic AMP pulses by centers, and their relay by other cells, is believed to occur during aggregation. It is suggested that the cell-bound enzyme determines a "time window" significantly smaller than the period of pulsing, and optimizes stimulation of the cyclic AMP receptors in chemotaxis and signal relaying.  相似文献   

10.
Discadenine,3-(3-amino-3-carboxypropyl)-N6-delta 2-isopentenyladenine, which inhibits spore germination, was previously found in Dictyostelium discoideum. Studies on the distribution of discadenine in different species of cellular slime molds by high-pressure liquid chromatography showed that discadenine is present in D. discoideum, Dictyostelium purpureum, and Dictyostelium mucoroides, but not in Dictyostelium minutum, Polysphondylium violaceum, or Polysphondylium pallidum. Discadenine synthetase, which is involved in biosynthesis of discadenine with N6-delta 2-isopentenyladenine as substrate, was only detected in cells of the former three species. In addition, discadenine inhibited spore germination only in these three species. These results clearly demonstrate that discadenine is produced as an inhibitor of spore germination in the species of cellular slime molds in which the acrasin is cyclic adenosine 5'-monophosphate (AMP). This means that there is a structural and biochemical correlation between the spore germination inhibitor and the acrasin, since 5'-AMP, a direct precursor in discadenine biosynthesis, can be derived from cyclic AMP by hydrolysis with cyclic AMP phosphodiesterase.  相似文献   

11.
Changes in guanosine cyclic 3′,5′-monophosphate associated with adenosine cyclic 3′,5′-monophosphate and folic acid addition in the presence of ATP have been examined in Dictyostelium discoideum. Preincubation with 1 mM ATP had no effect on the basal cyclic GMP level but increased the cycli GMP accumulation in response to cylci AMP (5·10−8 M) or folic acid (5·10−6 M) 40–50%. ATP could not be replaced by ADP of 5′-adenylyliminodiphosphate. Because ATP has no effect on cyclic AMP receptor binding these results indicate that structural membrane alterations (e.g. membrane phosphorylation) may control the transduction of a chemotactic signal.  相似文献   

12.
Aggregation-competent myxamoebae of the cellular slime mold Dictyostellium discoideum are known to exhibit two responses to extracellular pulses of 3′5′-cyclic AMP: an immediate chemotactic movement; and a delayed generation of intracellular cyclic AMP which is subsequently released into the medium. The mechanism of the latter, the so-called signalling response, may depend on alterations in intracellular metabolite levels and is the subject of this communication.Myxamoebae of the wild-type strain NC-4 of D. discoideum were suspended in an aerated, stirred 17 mM potassium phosphate buffer. pH 6.0, at a concentration of approx. 6 · 10?7 cells/ml (8%, v/v) at 25°C and were pulsed with 1. 10?8—1 · 10?7 M cyclic AMP at 10–20-min intervals for periods of 3–5 h over incubation of 4–9 h. Suspensions were monitored continuously for transient turbidity decreases following the cyclic AMP pulses as an indication of the magnitude and duration of the cellular response to cyclic AMP. When the pattern of turbidity decrease indicated that a signalling response had developed, samples were withdrawn at 10–15-s intervals from the suspension, inactivated with perchloric acid, and analyzed for cyclic AMP, ATP, ADP, AMP, pyruvate, and glucose 6-phosphate. In separate experiments, steady-state oxygen tension was monitored along with turbidity to detect possible changes in respiratory rate.The following consistent patterns were observed after the added cyclic AMP pulse: a transient increase in the ADP level which reaches maximum between 0.7 and 1.7 min; transient decreases in ATP and pyruvate which concide with and approximately equal the magnitude of the increase in ADP; a later increase in glucose 6-phosphate which reaches maximum approx. 2 min after the ADP  相似文献   

13.
Summary Preparations of avian erythrocyte plasma membranes have been made which are in the form of sealed vesicles. Using these preparations the permeability of the membranes to Na+ K+, Mg+ and Ca+ was measured. Monobutyryl cyclic AMP and cyclic AMP increased the permeability to Na+ and Ca+ under conditions where no protein phosphorylation could occur. The only effect of phosphorylation of membrane proteins was to reduce Ca+ permeability. It is thus concluded that cyclic AMP increases Na+ permeability in the avian erythrocyte by a direct effect which does not involve protein phosphorylation.  相似文献   

14.
In cells of the cellular slime mold Dictyostelium discoideum concanavalin A (Con A), at a concentration of 100 microgram per ml, inhibits folic acid and cyclic AMP induced decrease in light scattering. Con A has no effect on folic acid mediated cyclic GMP accumulation and increases cyclic AMP mediated cyclic GMP accumulation two-fold. At a lower Con A concentration, 10 microgram per ml, changes in light scattering induced by folic acid are normal and cyclic AMP induces a monophasic instead of a biphasic response. The stimulatory effect of Con A on cyclic AMP mediated cyclic GMP accumulation is still observable at 10 microgram Con A per ml. When cells are repeatedly stimulated with cyclic AMP, a decrease in light scattering without being accompanied by changes in cyclic GMP concentration is observed. Based on these results a model for chemotaxis is proposed.  相似文献   

15.
In this paper we address the following question: can a single cell of the cellular slime mold Dictyostelium discoideum serve as a pacemaker for the aggregation phase? Whether or not this is possible is determined by the relative importance of cyclic AMP production due to self-stimulation as compared to diffusion of cyclic AMP away from the cell and extracellular degradation. We determine the conditions under which a single cell on an infinite place can emit periodic signals of cyclic AMP using a model developed previously for signal relay and adaptation in Dictyostelium. Elsewhere it has been shown that this model provides an accurate representation of the stimulus-response behavior of Dictyostelium for a variety of experimental conditions.  相似文献   

16.
The transition of the unicellular to the multicellular stage in Dictyostelium lacteum is not mediated by cyclic AMP. The attractant for aggregative amoebae of this cellular slime mold species was isolated from yeast extract and purified more than 1000-fold without a significant loss of activity. Several characteristics of the chemotactic molecule specific for D. lacteum are reported, and the presence of an inactivating enzyme has been demonstrated.  相似文献   

17.
This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis ofDictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using streamer F mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.  相似文献   

18.
Adenylate cyclase is the critical enzyme in the chemotactic signal relay mechanism of the slime mold amoeba, Dictyostelium discoideum. However, few studies examining the regulation of this enzyme have been performed in vitro due to the instability of enzyme activity in crude lysates. For studies presented in this communication, a membrane preparation has been isolated that exhibits a high specific activity adenylate cyclase that is stable during storage at -70 degrees C and under assay conditions at 27 degrees C. The enzyme was activated by micromolar concentrations of MnCl2. GTP and its non-hydrolyzable analog, guanosine 5'-(beta, gamma-imino)triphosphate, inhibited the enzyme non-competitively in the presence of either Mg2+ or Mn2+. However, this inhibition was more pronounced in the presence of Mn2+. Since guanylate cyclase activity in the D. discoideum membranes was less than 10% of the adenylate cyclase activity, there could not be a significant contribution by guanylate cyclase toward the production of cyclic AMP. Experiments indicate that D. discoideum adenylate cyclase was also regulated by adenosine analogs. The enzyme was inhibited by 2',5'-dideoxyadenosine and 2'-deoxyadenosine and inhibition was augmented by the presence of Mn2+. However, the inhibition was not entirely consistent with that which would be expected for the P-site of eukaryotic systems because some purine-modified adenosine analogs also inhibited the enzyme. Guanine nucleotides had no effect on the inhibition by either purine-modified or ribose-modified adenosine analogs. The binding of cyclic AMP to its receptor on the D. discoideum membranes was not affected by either MnCl2 or adenosine analogs.  相似文献   

19.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum. Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP. Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

20.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum . Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP.
Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号