首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+/calmodulin activated protein kinase II (CaMKII) is an oligomeric protein kinase with a unique holoenyzme architecture. The subunits of CaMKII are bound together into the holoenzyme by the association domain, a C-terminal region of approximately 140 residues in the CaMKII polypeptide. Single particle analyses of electron micrographs have suggested previously that the holoenyzme forms a dodecamer that contains two stacked 6-fold symmetric rings. In contrast, a recent crystal structure of the isolated association domain of mouse CaMKIIalpha has revealed a tetradecameric assembly with two stacked 7-fold symmetric rings. In this study, we have determined the crystal structure of the Caenorhabditis elegans CaMKII association domain and it too forms a tetradecamer. We also show by electron microscopy that in its fully assembled form the CaMKII holoenzyme is a dodecamer but without the kinase domains, either from expression of the isolated association domain in bacteria or following their removal by proteolysis, the association domains form a tetradecamer. We speculate that the holoenzyme is held in its 6-fold symmetric state by the interactions of the N-terminal approximately 1-335 residues and that the removal of this region allows the association domain to convert into a more stable 7-fold symmetric form.  相似文献   

2.
Excess levels of circulating amino acids (AAs) play a causal role in specific human pathologies, including obesity and type 2 diabetes. Moreover, obesity and diabetes are contributing factors in the development of cancer, with recent studies suggesting that this link is mediated in part by AA activation of mammalian target of rapamycin (mTOR) Complex 1. AAs appear to mediate this response through class III phosphatidylinositol 3-kinase (PI3K), or human vacuolar protein sorting 34 (hVps34), rather than through the canonical class I PI3K pathway used by growth factors and hormones. Here we show that AAs induce a rise in intracellular Ca2+ ([Ca2+]i), which triggers mTOR Complex 1 and hVps34 activation. We demonstrate that the rise in [Ca2+]i increases the direct binding of Ca2+/calmodulin (CaM) to an evolutionarily conserved motif in hVps34 that is required for lipid kinase activity and increased mTOR Complex 1 signaling. These findings have important implications regarding the basic signaling mechanisms linking metabolic disorders with cancer progression.  相似文献   

3.
The regional and tissue-specific expression of the Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, were examined. The Mr 65,000 alpha-polypeptide of CaM kinase-Gr is expressed ubiquitously in different anatomical regions of rat brain, whereas an additional Mr 67,000 beta-polypeptide is observed solely in the cerebellum. The alpha-polypeptide appears in the neonatal rat forebrain and cerebellum, whereas the beta-polypeptide appears by the second postnatal week and may reflect cerebellar granule cell differentiation. Most peripheral tissues do not express either CaM kinase-Gr polypeptide. However, rat thymus and thymocytes derived therefrom express CaM kinase-Gr at levels comparable to those of the central nervous system. The identity of the enzyme in rat thymus was corroborated by immunoblot assays, Northern blots, and direct enzyme purification. Rat spleen and testis also produce CaM kinase-Gr, but at lower levels than either thymus or brain. These observations demonstrate selective regional and developmental expression of CaM kinase-Gr polypeptide in brain, and suggest that it may participate in Ca2+ signalling in cells derived both from the immune system as well as the central nervous system.  相似文献   

4.
Neurogranin (Ng) is a postsynaptic IQ-motif containing protein that accelerates Ca2+ dissociation from calmodulin (CaM), a key regulator of long-term potentiation and long-term depression in CA1 pyramidal neurons. The exact physiological role of Ng, however, remains controversial. Two genetic knockout studies of Ng showed opposite outcomes in terms of the induction of synaptic plasticity. To understand its function, we test the hypothesis that Ng could regulate the spatial range of action of Ca2+/CaM based on its ability to accelerate the dissociation of Ca2+ from CaM. Using a mathematical model constructed on the known biochemistry of Ng, we calculate the cycle time that CaM molecules alternate between the fully Ca2+ saturated state and the Ca2+ unbound state. We then use these results and include diffusion of CaM to illustrate the impact that Ng has on modulating the spatial profile of Ca2+-saturated CaM within a model spine compartment. Finally, the first-passage time of CaM to transition from the Ca2+-free state to the Ca2+-saturated state was calculated with or without Ng present. These analyses suggest that Ng regulates the encounter rate between Ca2+ saturated CaM and its downstream targets during postsynaptic Ca2+ transients.  相似文献   

5.
6.
ALG-2 belongs to the penta-EF-hand (PEF) protein family and interacts with various intracellular proteins, such as Alix and TSG101, that are involved in endosomal sorting and HIV budding. Through X-ray crystallography, we solved the structures of Ca(2+)-free and -bound forms of N-terminally truncated human ALG-2 (des3-20ALG-2), Zn(2+)-bound form of full-length ALG-2, and the structure of the complex between des3-23ALG-2 and the peptide corresponding to Alix799-814 in Zn(2+)-bound form. Binding of Ca(2+) to EF3 enables the side chain of Arg125, present in the loop connecting EF3 and EF4, to move enough to make a primary hydrophobic pocket accessible to the critical PPYP motif, which partially overlaps with the GPP motif for the binding of Cep55 (centrosome protein 55 kDa). Based on these results, together with the results of in vitro binding assay with mutant ALG-2 and Alix proteins, we propose a Ca(2+)/EF3-driven arginine switch mechanism for ALG-2 binding to Alix.  相似文献   

7.
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly wel to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.Special issue dedicated to Dr. Paul Greengard.  相似文献   

8.
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium.  相似文献   

9.
Y H Xu  G M Carlson 《Biochemistry》1999,38(30):9562-9569
A polyclonal antibody was generated against a peptide corresponding to a region opposite the regulatory face of glycogen phosphorylase b (P-b), providing a probe for detecting and quantifying P-b when it is bound to its activating kinase, phosphorylase kinase (PhK). Using both direct and competition enzyme-linked immunosorbent assays (ELISAs), we have measured the extent of direct binding to PhK of various forms of phosphorylase, including different conformers induced by allosteric effectors as well as forms differing at the N-terminal site phosphorylated by PhK. Strong interactions with PhK were observed for both P-b', a truncated form lacking the site for phosphorylation, and P-a, the phosphorylated form of P-b. Further, the binding of P-b, P-b', and P-a was stimulated a similar amount by Mg(2+), or by Ca(2+) (both being activators of PhK). Our results suggest that the presence and conformation of P-b's N-terminal phosphorylation site do not fully account for the protein's affinity for PhK and that regions distinct from that site may also interact with PhK. Direct ELISAs detected the binding of P-b by a truncated form of the catalytic gamma subunit of PhK, consistent with the necessary interaction of PhK's catalytic subunit with its substrate P-b. In contrast, P-b' bound very poorly to the truncated gamma subunit, suggesting that the N-terminal phosphorylatable region of P-b may be critical in directing P-b to PhK's catalytic subunit and that the binding of P-b' by the PhK holoenzyme may involve more than just its catalytic core. The sum of our results suggests that structural features outside the catalytic domain of PhK and outside the phosphorylatable region of P-b may both be necessary for the maximal interaction of these two proteins.  相似文献   

10.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

11.
Phosphorylase kinase (EC 2.7.1.38) activity in crude cytosol preparations of chicken adipose tissue was assayed using as substrate either the endogenous phosphorylase b in the preparation or added purified rabbit skeletal muscle phosphorylase b. The results obtained with the two substrates were similar. The phosphorylase kinase reaction was markedly inhibited by ethyleneglycol-bis-(β-aminoethylether)-N,N′,-tetraacetic acid (EGTA), maximum inhibition (about 90%) occurring at approx. 0.2 mM. This inhibition was readily reversed by addition of Ca2+. Full reversal was achieved with 0.3 mM Ca2+ in the presence of 0.5 mM EGTA; the estimated free Ca2+ concentration required was 4 μM. The activation of phosphorylase b was blocked immediately and completely by EGTA added during the course of the assay; reversal was achieved without a time lag by the addition of Ca2+. The Ca2+ requirement was also demonstrated directly by preparing an enzyme fraction from which Ca2+ had been removed and by using Ca2+-free reagents. Under these conditions the Ca2+ concentration needed for half maximum activation was 10 μM and maximum activation was obtained at about 100 μM. The possibility that the effects of EGTA and Ca2+ might be related to changes in phosphorylase phosphatase activity rather than phosphorylase kinase was considered unlikely since the phosphorylase phosphatase activity was inhibited during the phosphorylase kinase assay step by the inclusion of fluoride and β-glycerophosphate. Phosphorylase kinase activity in rat adipocytes, using endogenous phosphorylase as substrate, was also inhibited EGTA but, whereas the activity in chicken adipose tissue was inhibited by 90%, the activity in rat adipose tissue was inhibited only 60%. These data indicate that adipose tissue phosphorylase kinase has a Ca2+ requirement for optimal activity and is thus qualitatively similar to the enzyme in contractile tissues.  相似文献   

12.
NDR, a nuclear serine/threonine kinase, belongs to the subfamily of Dbf2 kinases that is critical to the morphology and proliferation of cells. The activity of NDR kinase is modulated in a Ca(2+)/S100B-dependent manner by phosphorylation of Ser281 in the catalytic domain and Thr444 in the C-terminal regulatory domain. S100B, which is a member of the S100 subfamily of EF-hand proteins, binds to a basic/hydrophobic sequence at the junction of the N-terminal regulatory and catalytic domains (NDR(62-87)). Unlike calmodulin-dependent kinases, regulation of NDR by S100B is not associated with direct autoinhibition of the active site, but rather involves a conformational change in the catalytic domain triggered by Ca(2+)/S100B binding to the junction region. To gain further insight into the mechanism of activation of the kinase, studies have been carried out on Ca(2+)/S100B in complex with the intact N-terminal regulatory domain, NDR(1-87). Multidimensional heteronuclear NMR analysis showed that the binding mode and stoichiometry of a peptide fragment of NDR (NDR(62-87)) is the same as for the intact N-terminal regulatory domain. The solution structure of Ca(2+)/S100B and NDR(62-87) has been determined. One target molecule is found to associate with each subunit of the S100B dimer. The peptide adopts three turns of helix in the bound state, and the complex is stabilized by both hydrophobic and electrostatic interactions. These structural studies, in combination with available biochemical data, have been used to develop a model for calcium-induced activation of NDR kinase by S100B.  相似文献   

13.
The molecular conformation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) from the rat forebrain and cerebellum was studied by means of EM using a quick-freezing technique. Each molecule appeared to be composed of two kinds of particles, with one larger central particle and smaller peripheral particles and had shapes resembling that of a flower with 8 or 10 "petals". A favorable shadowing revealed that each peripheral particle had a thin link to the central particle. We predicted that the 8-petal molecules and 10-petal molecules were octamers and decamers of CaM kinase II subunits, respectively, each assembled with the association domains of subunits gathered in the center, and the catalytic domains in the peripheral particles. Binding of antibodies to the enzyme molecules suggested that molecules with 8 and 10 peripheral particles were homopolymers composed only of beta subunit and of alpha subunit, respectively, specifying that CaM kinase II consists of homopolymer of either alpha or beta subunits.  相似文献   

14.
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases.  相似文献   

15.
In many cell types, Ca2+ signals are organized in the form of repetitive spikes. The frequency of these intracellular Ca2+ oscillations increases with the level of stimulation, suggesting the existence of a frequency encoding phenomenon. The question arises as to how the frequency of Ca2+ oscillations can be decoded inside the cell. Ca2+/calmodulin kinase II has long been proposed as an attractive candidate, as it is a key target of Ca2+ signals. By immobilizing the Ca2+/calmodulin kinase II and subjecting it to pulses of Ca2+ of variable amplitude, duration, and frequency, De Koninck and Schulman(1) have shown for the first time that the autonomous activity of Ca2+/calmodulin kinase II is highly sensitive to the temporal pattern of Ca2+ oscillations. BioEssays 20 :607–610, 1998.© 1998 John Wiley & Sons Inc.  相似文献   

16.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

17.
A neuronal Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) undergoes autophosphorylation on a serine residue(s) in response to Ca2+ and calmodulin. Phosphate incorporation leads to the formation of a Ca(2+)-independent (autonomous) activity state, as well as potentiation of the Ca2+/calmodulin-dependent response. The autonomous enzyme activity of the phosphorylated enzyme approximately equals the Ca2+/calmodulin-stimulated activity of the unphosphorylated enzyme, but displays diminished affinity toward ATP and the synthetic substrate, syntide-2. The Km(app) for ATP and syntide-2 increased 4.3- and 1.7-fold, respectively. Further activation of the autonomous enzyme by Ca2+/calmodulin yields a marked increase in the affinity for ATP and peptide substrate such that the Km(app) for ATP and syntide-2 decreased by 14- and 8-fold, respectively. Both autophosphorylation and the addition of Ca2+/calmodulin are required to produce the maximum level of enzyme activation and to increase substrate affinity. Unlike Ca2+/calmodulin-dependent protein kinase type II that is dephosphorylated by the Mg(2+)-independent phosphoprotein phosphatases 1 and 2A, CaM kinase-Gr is dephosphorylated by a Mg(2+)-dependent phosphoprotein phosphatase that may be related to the type 2C enzyme. Dephosphorylation of CaM kinase-Gr reverses the effects of autophosphorylation on enzyme activity. A comparison between the autophosphorylation and dephosphorylation reactions of CaM kinase-Gr and Ca2+/calmodulin-dependent protein kinase type II provides useful insights into the operation of Ca(2+)-sensitive molecular switches.  相似文献   

18.
《FEBS letters》1987,219(1):249-253
Ca2+-dependent chromatography of soluble cytosolic proteins on calmodulin-Sepharose gave a fraction that exhibited Ca2+- and calmodulin-dependent phosphorylation of several polypeptides, including 60, 56 and 45 kDa species. At 0.2 μM beef calmodulin the phosphorylation was optimal at 3 μM free Ca2+, and at 80 μM free Ca2+ it was half-maximal at about 0.1 μM beef calmodulin. It is concluded that the fraction contains calmodulin-dependent protein kinase(s) which is (are) autophosphorylated or associated with substrates.  相似文献   

19.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

20.
Ca2+/calmodulin-dependent protein kinase (Ca2+/CaM kinase I), which phosphorylates site I of synapsin I, has been highly purified from bovine brain. The physical properties and substrate specificity of Ca2+/CaM kinase I were distinct from those of all other known Ca2+/CaM kinases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified enzyme preparation consisted of two major polypeptides of Mr 37,000 and 39,000 and a minor polypeptide of Mr 42,000. In the presence of Ca2+ and calmodulin (CaM), all three polypeptides bound CaM, were autophosphorylated on threonine residues, and were labeled by the photoaffinity label 8-azido-ATP. Peptide maps of the three autophosphorylated polypeptides were very similar. The Stokes radius and the sedimentation coefficient of the enzyme were, respectively, 31.8 A and 3.25 s. A molecular weight of 42,400 and a frictional ratio of 1.38 were calculated from the above values, suggesting that Ca2+/CaM kinase I is a monomer. It is possible that the polypeptides of lower molecular weight are derived from the polypeptide of Mr 42,000 by proteolysis; alternatively, the polypeptides may represent isozymes of Ca2+/CaM kinase I. Synapsin I (site I) was the best substrate tested (Km, 2-4 microM) for Ca2+/CaM kinase I. Of many additional proteins tested, only protein III (a phosphoprotein related to synapsin I) and smooth muscle myosin light chain were phosphorylated. Ca2+/CaM kinase I was found in highest concentration in brain, where it showed widespread regional and subcellular distributions. In addition, the enzyme had a widespread and predominantly cytosolic tissue distribution. The widespread neuronal and tissue distribution of Ca2+/CaM kinase I suggests that other substrates might exist for this enzyme in both neuronal and non-neuronal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号