首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swallowing of amniotic fluid and lung fluid inflow were eliminated in 10 chronically instrumented fetuses. The urachus was ligated, and fetal was urine drained to the outside. At the beginning and the end of 21 experiments of 66 +/- 5 (SE) h duration, all amniotic fluid was temporarily drained to the outside for volume measurement and sampling. Amniotic fluid osmolalities and oncotic pressures were experimentally controlled. Amniochorionic absorption of amniotic fluid depended strongly on the osmolality difference between amniotic fluid and fetal plasma (P < 0.001), but at zero osmolality difference there still was a mean absorption rate of 23.8 +/- 4.7 (SE) ml/h (P < 0.001). Absorption was unaffected by the protein concentration difference between amniotic fluid and fetal plasma, but infused bovine albumin in the amniotic fluid was absorbed at a rate of 1.8 8 +/- 0.4 g/h (P < 0.001), corresponding to a volume flow of fluid of 33.8 8 +/- 6.1 ml/h (P < 0.001). Fluid absorption in the amniochorion is driven in part by crystalloid osmotic pressure, but about 25 ml/h is absorbed by a path that is permeable to protein. That path has the physiological characteristics of lymphatic drainage, although no anatomic basis is known to exist for a lymphatic system in the amniochorion.  相似文献   

2.
To test the hypothesis that a substance present in the amniotic fluid could serve as a regulator of amniotic fluid volume, we drained and discarded amniotic fluid while replacing it with lactated Ringer solution that was isotonic to amniotic fluid. Seven ewes with singleton fetuses at 119 +/- 1 days of gestation (mean +/- SE) were instrumented with multiple indwelling catheters in the pedal artery, pedal vein, and amniotic cavity. During the exchange periods, an average of 3,019 +/- 171 ml/day of lactated Ringer solution was infused into the amniotic cavity while an equal amount of amniotic fluid was pumped out and discarded. During the control period, amniotic fluid composition and volume were not altered. Exchange and control periods started with the same amniotic fluid volume, lasted 3 or 4 days, and were randomized with regard to order. Amniotic fluid volume measured by vacuum drainage was 556 +/- 98 ml at the end of the control period and 986 +/- 209 ml (P = 0.03) at the end of the exchange period. Fetal arterial blood gases, hemodynamic parameters and the osmolality gradient between fetal plasma and amniotic fluid were not altered by the exchange process. A linear relationship between the control amniotic fluid volume and the volume at the end of the exchange period (P = 0.003) suggests that the animals with larger control volumes responded to isovolumic dilution with a larger volume increase. We conclude that amniotic fluid may contain a substance that regulates amniotic volume.  相似文献   

3.
Changes in lung liquid dynamics induced by prolonged fetal hypoxemia   总被引:1,自引:0,他引:1  
Our aim was to determine the effect of prolonged fetal hypoxemia, induced by reduced maternal uterine blood flow (RUBF), on fetal lung liquid secretion, flow, and volume. In chronically catheterized fetal sheep, lung liquid volume (VL) and the secretion rate of lung liquid (Vs) were measured before and after a 24-h period of either RUBF or normoxemia. Tracheal fluid flow and the incidence of fetal breathing movements (FBM) were measured before, during, and after the 24-h period. In normoxic control fetuses Vs was not significantly altered. After 24 h of RUBF, Vs was significantly (P less than 0.005) reduced compared with pre-RUBF values. During 24 h of RUBF the incidence of FBM declined initially but returned to control values after 12-16 h. In seven of eight fetuses, over the 12- to 24-h period of RUBF, large amounts of liquid (22.7-62.6 ml) were drawn into the lungs during FBM, resulting in a net movement of amniotic fluid into the lungs. During the 18- to 24-h period of RUBF, changes in the incidence of FBM were found to be significantly and positively correlated (r = 0.86, P less than 0.005) with the changes in VL that occurred over the 24-h period. Thus, prolonged RUBF can result in the inhalation of large volumes of amniotic fluid by the fetus, which could be a cause of in utero meconium aspiration.  相似文献   

4.
The purpose of this study was to compare the specific cortisol-binding protein found associated with human amnion with specific cortisol binding in human amniotic fluid and plasma. The electrophoretic mobility on polyacrylamide gels of the specific cortisol binding in amnion, amniotic fluid, and maternal plasma was identical. The influence of pH on cortisol binding activity was similar in all tissues and the cortisol binding was immunoprecipitable by a polyclonal antibody raised against human corticosteroid-binding globulin. The interaction of the cortisol binding protein with concanavalin A was studied in preterm amniotic fluid, term amniotic fluid, term amnion, and plasma from pregnant women at term and women under oral contraceptive treatment. Binding to concanavalin A was similar in term amnion and term amniotic fluid but was less than that found with both preterm amniotic fluid and term plasma. These results indicate that the cortisol binding protein associated with human amnion has similar characteristics to plasma corticosteroid-binding globulin, but that its state of glycosylation appears to be more like that of the cortisol binding protein in term amniotic fluid rather than in plasma.  相似文献   

5.
Prolonged oligohydramnios, or a lack of amniotic fluid, is associated with pulmonary hypoplasia and subsequent perinatal morbidity, but it is unclear whether short-term or acute oligohydramnios has any effect on the fetal respiratory system. To investigate the acute effects of removal of amniotic fluid, we studied nine chronically catheterized fetal sheep at 122-127 days gestation. During a control period, we measured the volume of fluid in the fetal potential airways and air spaces (VL), production rate of that fluid, incidence and amplitude of fetal breathing movements, tracheal pressures, and fetal plasma concentrations of cortisol, epinephrine, and norepinephrine. We then drained the amniotic fluid for a short period of time [24-48 h, 30.0 +/- 4.0 (SE) h] and repeated the above measurements. The volume of fluid drained for the initial studies was 1,004 +/- 236 ml. Acute oligohydramnios decreased VL from 35.4 +/- 2.9 ml/kg during control to 22.0 +/- 1.6 after oligohydramnios (P less than 0.004). Acute oligohydramnios did not affect the fetal lung fluid production rate, fetal breathing movements, or any of the other measured variables. Seven repeat studies were performed in six of the fetuses after reaccumulation of the amniotic fluid at 130-138 days, and in four of these studies the lung volume also decreased, although the overall mean for the repeat studies was not significantly different (27.0 +/- 5.2 ml/kg for control vs. 25.5 +/- 5.5 ml/kg for oligohydramnios). Again, none of the other measured variables were altered by oligohydramnios in the repeat studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Arterial baroreceptors reflexly regulate sympathetic and heart rate responses to alteration of blood pressure. The primary mechanical determinant of arterial baroreceptor activity in humans remains unclear. We examined the influence of systolic, diastolic, pulse, and mean arterial pressures on efferent muscle sympathetic nerve activity (MSNA, microneurography) and heart rate responses during perturbation of arterial pressure in 10 normal human subjects [age 25 +/- 2 (SE) yr]. We directly measured arterial pressure, heart rate, and MSNA during intravenous vasodilator infusion (nitroprusside, 6 +/- 1 micrograms.kg-1.min-1, n = 6; or hydralazine, 16 +/- 2 mg, n = 4) while central venous pressure was held constant by simultaneous volume expansion. Changes in arterial pressures were compared with changes in heart rate and MSNA over 3-min periods of vasodilator infusion during which we observed increases in systolic and pulse pressures with simultaneous decreases in mean and diastolic pressures. During vasodilator infusion, there were increases in systolic (124.2 +/- 2.1 to 131.7 +/- 2.9 Torr, P less than 0.001) and pulse pressures (57.0 +/- 2.2 to 72.7 +/- 2.7 Torr, P less than 0.001) although mean arterial pressure fell (88.0 +/- 2.6 to 80.4 +/- 2.7 Torr, P less than 0.001) because of decreases in diastolic pressure (67.2 +/- 3.0 to 59.0 +/- 2.7 Torr, P less than 0.001). The changes in arterial pressures were accompanied by simultaneous increases in heart rate (66.4 +/- 3.0 to 92.6 +/- 4.8 beats/min, P less than 0.001) and MSNA (327 +/- 59 to 936 +/- 171 U, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of amniotic fluid obtained from second trimester (16–20 wks) and term pregnancies (38–41 wks) on the production of PGE and F by human amnion, decidua and myometrium at term was determined using tissue slices incubated in vitro. Midpregnancy amniotic fluid neither inhibited nor stimulated the prostanoid production by any of the tissues. In contrast, term amniotic fluid obtained before as well as after the onset of labor markedly increased the production of both PGE and PGF in decidua and myometrium from levels in Krebs solution. The prostanoid production (PGE + PGF) in amnoin was not significantly increased but the proportion of PGF was raised during incubations in term amniotic fluid. In decidua and myometrium the increase in PGE and PGF production in term amniotic fluid was approximately 200 and 400 percent respectively, from control values in Krebs solution. We propose that the stimulatory activity in term amniotic fluid in responsible for the accelerated synthesis of prostaglandins after of membranes, which is reflected in raised PGF metabolite levels in maternal circulation. It may also be the reason for the rise in amniotic fluid prostaglandin levels around the 35th week of gestation, and perhaps for the onset of labor.  相似文献   

8.
Amniotic fluid volume (AFV) and amniotic fluid ingestion rate (or fetal swallowing rate, FSR) were estimated by inulin and para-aminohippurate (PAH) dilution in 14 normal baboon pregnancies. Mean (± SE) AFV was significantly lower at 137–140 days of pregnancy (preterm) than at 173–178 days (term) (inulin: 326 ± 22.9 ml vs 483 ± 55.9 ml, P = 0.014; PHA:269 ± 39.4 ml vs 471 ± 39.4 ml, P = 0.002). In proportion to fetal weight, however, mean AFV was similar throughout the third trimester of pregnancy (inulin: 582 ± 40.9 ml/kg; PAH: 541 ± 39.8 ml/kg). Mean FSR was lower in preterm than in term animals when estimated by inulin dilution (587 ± 55.5 ml/day vs 784 ± 55.0 ml/day, P = 0.030) but not when estimated by PAH dilution (753 ± 65.7 ml/day vs 625 ± 50.6 ml/day). In proportion to their weights, however, preterm fetuses swallowed amniotic fluid more rapidly than term fetuses (inulin: 1,216 ± 117.6 ml/kg/day vs 840 ± 67.5 ml/kg/day, P = 0.025; PAH: 1,561 ± 142.9 ml/kg/day vs 682 ± 62.7 ml/kg/day, P < 0.001). Furthermore, our data suggest that the commonly accepted technique for estimating AFV may be based on inaccurate premises, that insulin may be a better marker than PAH to estimate AFV and FSR, and that needle aspiration of amniotic fluid does not appear to be an adequate technique to validate chemical dilution methods. Our data, however, provide estimates which indicate that the baboon is an appropriate animal model in which to seek refinements and validation of our techniques.  相似文献   

9.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

10.
The effects of prolonged hypoxia on body water distribution was studied in four unanesthetized adult goats (Capra lircus) at sea level and after 16 days in a hypobaric chamber [(380 Torr, 5,500 m, 24 +/- 1 degrees C); arterial PO2 = 27 +/- 2 (SE) Torr]. Total body water (TBW), extracellular fluid volume (ECF), and plasma volume (PV) were determined with 3H2O, [14C]inulin, and indocyanine green dye, respectively. Blood volume (BV) [BV = 100PV/(100 - hematocrit)], erythrocyte volume (RCV) (RCV = BV - PV), and intracellular fluid (ICF) (ICF = TBW - ECF) and interstitial fluid (ISF) (ISF = ECF - PV) volumes were calculated. Hypoxia resulted in increased pulmonary ventilation and arterial pH and decreased arterial PCO2 and PO2 (P less than 0.05). In addition, body mass (-7.1%), TBW (-9.1%), and ICF volume (-14.4%) all decreased, whereas ECF (+11.7%) and ISF (+27.7%) volumes increased (P less than 0.05). The decrease in TBW accounted for 89% of the loss of body mass. Although PV decreased significantly (-15.3%), BV was unchanged because of an offsetting increase in RCV (+39.5%; P less than 0.05). We conclude that, in adult goats, prolonged hypobaric hypoxia results in decreases in TBW volume, ICF volume, and PV, with concomitant increases in ECF and ISF volumes.  相似文献   

11.
5-Hydroxyeicosatetraenoic acid (5-HETE) is an arachidonic acid (AA) metabolite derived from the lipoxygenase pathway which is capable of inducing uterine contractions. The purpose of this study was to determine a). whether 5-HETE concentrations in amniotic fluid increase before or after the onset of labor and b). whether acetylsalicylic acid (ASA) could modulate the production of 5-HETE by human amnion cells. 5-HETE concentrations are increased in amniotic fluid before the onset of labor. Furthermore, ASA treatment as expected inhibited PGE2, but also significantly increased 5-HETE production by amnion cells. 5-HETE concentrations on average increased by greater than 2.5 fold (p < 0.001) in amniotic fluid prior to spontaneous labor when compared with samples obtained from the same patients earlier in gestation and therefore may be important in mechanisms regulating the onset of labor. ASA provokes an increase in 5-HETE biosynthesis by amnion cells: control media 2.60 ± 1.5, ASA treatment alone 5.17 ± 0.20, IL-1β alone 6.39 ± 2.1, and ASA + IL-1β 8.95 ± 1.2 (mean ± SEM) picograms per microgram protein per 16 hours. These findings may explain in part why cyclooxygenase inhibitors are not always successful in treating women with preterm labor.  相似文献   

12.
Park SJ  Yoon WG  Song JS  Jung HS  Kim CJ  Oh SY  Yoon BH  Jung G  Kim HJ  Nirasawa T 《Proteomics》2006,6(1):349-363
Proteome analysis by 2-DE and PMF by MALDI-TOF MS was performed on human amnion and amniotic fluid at term. Ninety-two soluble and nineteen membrane proteins were identified from amnion. Thirty-five proteins were identified from amniotic fluid. Calgranulin A and B were found in all patients infected with Ureaplasma urealyticum, but not in any of the patients without infection, indicating that they are potential markers of intrauterine infection. Identity of calgranulin A and B was confirmed by MALDI-TOF/TOF MS. This study represents the first extensive analysis of the human amnion and amniotic fluid proteome at term and demonstrates that 2-DE and MALDI-TOF MS is a useful tool for identifying clinically significant biomarkers of problematic pregnancies.  相似文献   

13.
Since large volumes of nutrient rich amniotic fluid are swallowed by the fetus, it has been suggested that intestinal digestion and absorption contribute significantly to fetal nutrition. To see if nutrients are being gained across the intestine, we measured blood flow and intestinal arteriovenous concentration differences of glucose, alpha-amino nitrogen, lactate, fructose and oxygen in eleven third trimester fetal sheep with chronically implanted vascular catheters. We found that in fetal blood circulating through the intestine nutrient concentration decreased significantly with arterio-venous concentration differences for glucose of 0.78 +/- 0.21 (SEM) mg/dl (P < 0.002), for alpha-amino nitrogen of 0.52 +/- 0.15 mg/dl (P < 0.005), for lactate of 0.68 +/- 0.24 mg/dl (P < 0.05) and for oxygen of 1.50 +/- 0.08 ml/dl (P < 0.001). Fructose concentration did not change. Blood flow to the fetal intestine averaged 89.92 +/- 7.16 ml/min and the intestine consumed 0.74 +/- 0.24 mg of glucose, 0.43 +/- 0.17 mg of alpha-amino nitrogen, 0.83 +/- 0.28 mg of lactate and 1.37 +/- 0.14 ml of oxygen per minute. Compared to previously published values for the umbilical uptake of nutrients the fetal intestine metabolizes about 4% of the glucose, 6% of the alpha-amino nitrogen, 13% of the lactate and 6% of the oxygen obtained across the umbilical circulation. Intestinal absorption does not appear to serve as a source of simple nutrients for the rest of the fetus, in fact intestinal metabolism extracts significant amounts of nutrients from fetal blood.  相似文献   

14.
Identification and quantitative fluorimetric assay have been made on the content of DOPA, dopamine, noradrenaline and adrenaline in the amniotic fluid and amnion of the developing chick embryos. Significant increase in the content of DOPA, noradrenaline and adrenaline in the amniotic fluid was observed between the 6th and the 13th days of incubation; dopamine content sharply decreases at the 13th day. The content on amines in the amnion tissue remained essentially constant throughout the investigated period. The role of catecholamine in amniotic fluid in regulation of contractile activity of amniotic membrane in the developing chick embryo is discussed.  相似文献   

15.
Fibronectins from human adult plasma, fetal plasma and from amniotic fluid obtained during early and late gestation were compared with respect to (i) their reactivity with lectins, (ii) their binding to the physiological ligands gelatin and heparin, and (iii) the role of the carbohydrate residues in the binding to these two ligands. The two fibronectin isoforms displayed distinct developmental differences in both glycosylation and binding properties: (i) Proportions of tri/tetraantennary complex glycans compared to the fraction of biantennary structures, as inferred from the reactivity with concanavalin A, were highest in amniotic fluid fibronectin from late pregnancy, lower in amniotic fluid fibronectin from early gestation, and even lower in fetal and adult plasma fibronectins. Likewise, fucose (alpha 1-6) linked to the innermost N-acetylglucosamine of the chitobiosyl core, defined by reactivity with Lens culinaris agglutinin (LCA), was present primarily in amniotic fluid fibronectin, and decreased in content during gestation from the 2nd. to the 3rd. trimenon. Both fetal and adult plasma fibronectins were only weakly reactive with LCA, indicating a low content of (alpha 1-6) linked fucose residues. After prior treatment with sialidase, both plasma and amniotic fluid fibronectins strongly reacted with erythrocyte phytohaemagglutinin (E-PHA), indicating that both fibronectin isoforms contain bisecting (beta 1-4) N-acetylglucosamine residues. Amniotic fluid fibronectins showed much greater reactivity than adult and fetal plasma fibronectins with wheat germ agglutinin; binding of this lectin to amnion fluid fibronectins was not decreased by desialylation indicating the presence of poly(N-acetyllactosamine) units. Whereas amniotic fluid fibronectins were strongly reactive with peanut agglutinin, neither adult nor fetal plasma fibronectins did bind to this lectin unless after prior desialylation. Hence, both fibronectin isoforms contain O-glycan residues that are fully sialylated in fetal and adult plasma fibronectins, but only partly sialylated in amniotic fluid fibronectins. According to these differences, glycosylation of plasma and amniotic fluid fibronectins is under developmental regulation. (ii) Amniotic fluid fibronectins had a significantly lower binding activity for both heparin and gelatin than plasma fibronectins. Moreover, amnion fibronectin from late gestation displayed a significantly lower binding to these two ligands than amnion fibronectin from early gestation. Fetal plasma fibronectins had a lower binding activity for gelatin than adult plasma fibronectin. (iii) Treatment of fibronectins with sialidase, fucosidase and removal of N-glycans with endoglycosidases H and F did not affect binding to gelatin and heparin, indicating that the interaction of plasma and amnion fibronectin with these two ligands is not influenced by their oligosaccharide moieties.  相似文献   

16.
17.
Traditionally, the avian allantois has been considered a respiratory organ and a dumping ground for metabolic wastes. We tested the hypothesis that the allantoic fluid is also a depot for free amino acids and related compounds. To gain further insight in the specific role of the allantoic fluid, we included plasma and the amniotic fluid in this study. The work was carried out in 13- and 14-day-old chicken embryos. Using an HPLC-fluorometric technique, 40 of the 41 amino acids and related compounds investigated were detected. The amniotic fluid contained 32 compounds, while plasma and allantoic fluid contained 38 and 39 compounds, respectively. The glucose concentration was determined with a hexokinase technique. It was highest in plasma and lowest in the amniotic fluid. We identified three barriers that hyper- and hyporegulate a number of compounds: (1) a blood/allantois barrier, (2) a blood/amnion barrier, and (3) an allantois/amnion barrier. Compared with plasma and allantoic fluid, the amniotic fluid is a mostly hyporegulated environment.  相似文献   

18.
Control of ventilation in elite synchronized swimmers   总被引:1,自引:0,他引:1  
Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The present study was undertaken to evaluate the effects of whole amniotic fluid (AF) and fractions of AF on amnion cell prostaglandin E2 (PGE2) production. Amnion cells were grown to confluence and then incubated in the presence of AF, or fractions thereof, obtained at 17-19 weeks gestation (MID), at term prior to the onset of labor (NIL), and at term after spontaneous onset of labor (LABOR). All whole AFs were stimulatory to amnion cell PGE2 production (p less than 0.001) but the stimulation by NIL and LABOR AFs was significantly greater (p less than 0.001) than stimulation by the MID AF. Fractionation of the AFs from the three groups (n = 9-10 per group) revealed multiple discernable peaks of stimulatory activity in each group. The majority of peaks had retention times that were similar among the three groups, and peak stimulatory activities were greater in NIL and LABOR samples than in MID samples.  相似文献   

20.
We tested the hypothesis that volume infusion during strenuous exercise, by expanding blood volume, would allow better skin blood flow and better temperature homeostasis and thereby improve endurance time. Nine males exercised to exhaustion at 84.0 +/- 3.14% (SE) of maximum O2 consumption on a cycle ergometer in a double-blind randomized protocol with either no infusion (control) or an infusion of 0.9% NaCl (mean vol 1,280.3 +/- 107.3 ml). Blood samples and expired gases (breath-by-breath), as well as core and skin temperatures, were analyzed. Plasma volume decreased less during exercise with the infusion at 15 min (-13.7 +/- 1.4% control vs. -5.3 +/- 1.7% infusion, P less than 0.05) and at exhaustion (-13.6 +/- 1.2% vs. -1.3 +/- 2.2%, P less than 0.01). The improved fluid homeostasis was associated with a lower core temperature during exercise (39.0 +/- 0.2 degrees C for control and 38.5 +/- 0.2 degrees C for infusion at exhaustion, P less than 0.01) and lower heart rate (194.1 +/- 3.9 beats/min for control and 186.0 +/- 5.1 beats/min for infusion at exhaustion, P less than 0.05). However, endurance time did not differ between control and infusion (21.96 +/- 3.56 and 20.82 +/- 2.63 min, respectively), and neither did [H+], peak O2 uptake, and CO2 production, end-tidal partial pressure of CO2, blood lactate, or blood pressure. In conclusion, saline infusion increases heat dissipation and lowers core temperature during strenuous exercise but does not influence endurance time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号