首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new liquid chromatography mass spectrometry (LC/MS) method has been developed for the qualitative and quantitative analyses of phosphatidylcholine hydroperoxides (PC-OOH) in human plasma using a synthetic hydroperoxide (1-stearoyl-2-erucoyl-PC monohydroperoxide, PC 18:0/22:1-OOH) as an internal standard. 1-Stearoyl-2-linoleoyl-PC monohydroperoxide (PC 18:0/18:2-OOH) was identified in plasma by LC/MS by comparison with an authentic standard. The calibration curves obtained for 1-palmitoyl-2-linoleoyl-PC monohydroperoxide, PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were linear throughout the calibration range (0.1–1.0 pmol). The limit of detection (LOD) (S/N = 3:1) was 0.01 pmol, and the limit of quantification (LOQ) (S/N = 6:1) was 0.1 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. Plasma concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were 89 and 32 nM, respectively, in a healthy volunteer.  相似文献   

2.
We compared the molecular organization of equimolar [3alpha-2H1]cholesterol in 18:0-18:1PC (1-stearoyl-2-oleoylphosphatidylcholine), 18:0-22:6PC (1-stearoyl-2-docosahexaenoylphosphatidylcholine), 18:0-20:4PC (1-stearoyl-2-arachidonylphosphatidylcholine) and 20:4-20:4PC (1,2-diarachidonylphosphatidylcholine) bilayers by solid state 2H NMR. Essentially identical quadrupolar splittings (delta v(r) = 45 +/- 1 kHz) corresponding to the same molecular orientation characterized by tilt angle alpha0 = 16 +/- 1 degrees were measured in 18:0-18:1PC, 18:0-22:6PC and 18:0-20:4PC. A profound difference in molecular interaction with dipolyunsaturated 20:4-20:4PC, in contrast, is indicated for the sterol. Specifically, the tilt angle alpha0 = 22 +/- 1 degrees (derived from delta v(r) = 37 +/- 1 kHz) is greater and its membrane intercalation is only 15 mol%.  相似文献   

3.
An improved technique for the analysis of phosphatidylcholine (PC) monohydroperoxides was developed using quadrupole time-of-flight (Q-TOF) mass spectrometry with electrospray ionization. Separation was obtained using an HPLC C8 column with a gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides of palmitoyl-linoleoyl (C16:0/C18:2) PC, stearoyl-linoleoyl (C18:0/C18:2) PC, and oleoyl-linoleoyl (C18:1/C18:2) PC were detected mainly as MH(+) and [M+Na](+) ions in the heart of the intact rat. Using standard synthetic PCOOH (C16:0/C18:2-OOH), the lipid extract component was identified as (C16:0/C18:2-OOH) PC based on the product ions of ESI-MS-MS and, the PCOOH concentration was quantitated using HPLC with chemiluminescence detection. Two epoxyhydroxy derivatives of the three PCs mentioned above were also detected. This is the first report to show the presence of monohydroperoxides and epoxyhydroxy-derivatives of (C16:0/C18:2)PC, (C18:0/C18:2)PC, and (C18:1/C18:2) PC in the rat heart.  相似文献   

4.
Occurrence of platelet-activating factor in rabbit spermatozoa   总被引:1,自引:0,他引:1  
Spermatozoa obtained from rabbit ejaculate were analyzed for the presence of platelet-activating factor [PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)] by using standard HPLC and TLC procedures. Fractions corresponding to synthetic PAF (AGEPC) revealed PAF-like activity amounting to 0.35 +/- 0.06 pmol/10(8) cells (mean +/- SE) as determined by bioassays based on the release of [3H]serotonin from washed rabbit platelets. This activity was lost upon base-catalyzed methanolysis, but was restored to the original level after reacetylation. Analysis of the phosphatidylcholine (PC) fraction by GC-MS subsequent to base-catalyzed methanolysis showed that 1-O-alkyl-2-acylphosphocholine comprises about 12% of the PC fraction with alkyl chain lengths of 16:0 (88%) and 18:0 (12%).  相似文献   

5.
In order to study the role of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) in determining the molecular species composition of phosphatidylcholine (PC) and the specificity of lecithin:cholesterol acyltransferase (LCAT) in human plasma, we studied the PC species composition in plasma from abetalipoproteinemic (ABL) and control subjects before and after incubation at 37 degrees C. The ABL plasma contained significantly higher percentages of sn-2-18:1 species (16:0-18:1, 18:0-18:1, and 18:1-18:1) and lower percentages of sn-2-18:2 species (16:0-18:2, 18:0-18:2, and 18:1-18:2) as well as sn-2-20:4 species (16:0-20:4, 18:0-20:4, and 18:1-20:4). Similar abnormalities were found in the PC of ABL erythrocytes, while the PE of the erythrocytes was less affected. The relative contribution of various PC species towards LCAT reaction in ABL plasma was significantly different from that found in normal plasma. Thus, while 16:0-18:2 and 16:0-18:1 contributed, respectively, 43.8% and 15.9% of the total acyl groups used for cholesterol esterification in normal plasma, they contributed, respectively, 21.5% and 37.9% in ABL plasma. The relative contribution of 16:0-20:4 was also significantly lower in ABL plasma (4.7% vs. 9.0% in normal), while that of 16:0-16:0 was higher (6.4% vs. 0.5%). However, the selectivity factors of various species (percent contribution/percent concentration) were not significantly different between ABL and normal plasma, indicating that the substrate specificity of LCAT is not altered in the absence of VLDL and LDL. Incubation of ABL plasma in the presence of normal VLDL or LDL resulted in normalization of its molecular species composition and in the stimulation of its LCAT activity. Addition of LDL, but not VLDL, also resulted in the activation of lysolecithin acyltransferase (LAT) activity. The incorporation of [1-14C]palmitoyl lysoPC into various PC species in the presence of LDL was similar to that observed in normal plasma, with the 16:0-16:0 species having the highest specific activity. These results indicate that the absence of apoB-containing lipoproteins significantly affects the molecular species composition of plasma PC as well as its metabolism by LCAT and LAT reactions.  相似文献   

6.
The molecular organization of cholesterol in 1,2-didocosahexaenoylphosphatidylcholine (22:6-22:6PC) and 1-stearoyl-2-docosahexaenoylphosphatidylcholine (18:0-22:6PC) bilayers was investigated. Using low- and wide-angle X-ray diffraction (XRD), we determined that the solubility of the sterol at 20 degrees C was 11 +/- 3 mol % in 22:6-22:6PC vs 55 +/- 3 mol % in 18:0-22:6PC bilayers. Solubility in the dipolyunsaturated membrane rose to 17 +/- 3 mol % at 40 degrees C, while in the saturated-polyunsaturated membrane there was no change within experimental uncertainty. We compared the molecular orientation of [3alpha-(2)H(1)]cholesterol incorporated into 22:6-22:6PC bilayers to its solubility limit and into 18:0-22:6PC bilayers to a comparable concentration (10 mol %) in solid-state (2)H NMR experiments. The sterol possessed a tilt angle alpha(0) = 24 degrees +/- 1 degrees in 22:6-22:6PC that was independent of temperature over a range from 20 to 40 degrees C. In contrast, the value was alpha(0) = 21 degrees +/- 1 degrees in 18:0-22:6 bilayers at 20 degrees C and increased to alpha(0) = 24 degrees +/- 1 degrees at 40 degrees C. We attribute the low solubility of cholesterol in 22:6-22:6PC membranes to steric incompatibility between the rigid steroid moiety and the highly disordered docosahexaenoic acid (DHA) chain, which has the potential to promote lateral heterogeneity within DHA-rich membranes. Considering 22:6-22:6PC to be the most unsaturated phospholipid found in vivo, this model membrane study provides a point of reference for elucidating the role of sterol-lipid interactions in controlling local compositional organization. Our results form the basis for a model that is consistent with cholesterol's ability to modulate the activity of certain neural transmembrane proteins.  相似文献   

7.
Harroun TA  Katsaras J  Wassall SR 《Biochemistry》2008,47(27):7090-7096
Previously, we reported neutron diffraction studies on the depth of cholesterol in phosphatidylcholine (PC) bilayers with varying amounts of acyl chain unsaturation [Harroun, T. A., et al. (2006) Biochemistry 45, 1227-1233]. The center of mass of the 2,2,3,4,4,6-D 6 deuterated sites on the sterol label was found to reside 16 A from the middle of the bilayer in 1-palmitoyl-2-oleoylphosphatidylcholine (16:0-18:1PC), 1,2-dioleoylphosphatidylcholine (18:1-18:1PC), and 1-stearoyl-2-arachidonylphosphatidylcholine (18:0-20:4PC). This location places cholesterol's hydroxyl group close to the membrane surface, indicative of the molecule in its commonly understood "upright" orientation. However, for dipolyunsaturated 20:4-20:4PC membranes the label, thus the hydroxyl group, was found sequestered in the center of the bilayer. We attributed the change in location to the high level of disorder of polyunsaturated fatty acids (PUFA) that is incompatible with proximity to the rigid steroid moiety in its usual upright orientation. From that study, the unresolved question was whether the molecule was inverted or lying flat with respect to the membrane plane, in the middle of the bilayer. We have followed up those results with additional neutron experiments employing [25,26,26,26,27,27-D 7]cholesterol, a deuterated analogue labeled in the tail. These diffraction measurements unequivocally show cholesterol lies flat in the middle of 20:4-20:4PC bilayers.  相似文献   

8.
High affinity receptors have been demonstrated for the potent phospholipid autacoid, platelet-activating factor (PAF C18:0; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) in a variety of tissues, including the endometrium. Because of the relative instability of PAF and our previous demonstration that lyso-PAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphorylcholine), the major metabolite of PAF, displaced [3H]PAF from endometrial PAF receptor sites, we have examined the ability of bovine serum albumin (BSA) to prevent degradation of PAF and have characterized PAF and lyso-PAF binding sites in purified rabbit endometrial membranes isolated on Day 6 of pregnancy. In buffer containing the phospholipase A2 inhibitors, quinacrine (10 microM) and dibromoacetophenone (2 microM), and 0.25% BSA, 87.4 +/- 3.2% of added [3H]PAF C18:0 remained intact after incubation at 25 degrees C for 150 min. The metabolic products, lyso-PAF and 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (alkylacyl-GPC), only amounted to 5.2 +/- 3.2 and 3.3 +/- 1.1, respectively. At the same concentration, rabbit serum albumin (RSA) also significantly protected [3H]PAF C18:0 from metabolism, but bovine gamma globulin (BGG) was ineffective. The presence of 0.25% BSA, however, did not protect [3H]lyso-PAF C18:0 from extensive catabolism: the major product formed was [3H]alkylacyl-GPC. Insignificant amounts of [3H]PAF were formed. Under the same conditions (25 degrees C, 150 min) in the presence of 0.25% BSA, saturation analysis revealed the presence of two types of PAF C18:0 receptors in the endometrial membranes. Type 1 sites had a Kd of 0.42 +/- 0.03 nM (mean +/- SD; n = 3) and binding capacity of 0.11 +/- 0.01 pmol/mg protein. Type 2 receptor sites had a Kd of 5.96 +/- 0.35 nM and a binding capacity of 1.59 +/- 0.22 pmol/mg protein. Thus, in the presence of BSA, the binding capacities of the two classes of receptors were markedly reduced compared to values generated previously in its absence. The Kd of the Type 1 sites was not significantly changed by the presence of BSA. A single class of saturable high-affinity binding sites was demonstrable for lyso-PAF C18:0: Kds ranged from 0.76 +/- 0.58 to 11.1 +/- 0.62 nM, depending on which method of analysis was used (Eadie-Hofstee, Scatchard-Rosenthal, or the Lundon nonlinear method). The binding capacities were equally varied, ranging from 0.15 +/- 0.08 to 15.17 +/- 4.95 pmol/mg protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
BACKGROUND AND AIMS: Intestinal bile deficiency in cholestatic patients leads to fat malabsorption. We addressed the potency of model bile, bile salts and phosphatidylcholine (PC)-cholesterol (CH) liposomes to reconstitute fat absorption in permanently bile-diverted (BD) rats. METHODS: The plasma appearance of 13C-labeled palmitic acid (13C-16:0) and linoleic acid (13C-18:2) was determined after their enteral administration to BD or to control rats with an intact enterohepatic circulation (EHC) (13C-16:0 and 13C-18:2 dissolved in 25% olive oil-75% medium chain triacylglycerol oil mixture). BD rats were intraduodenally infused with buffer, model bile [consisting of 60 mM taurocholate (TC), 8 mM PC and 1 mM CH], buffer with TC, buffer with PC and CH liposomes, or buffer with lyso-PC and CH. RESULTS: Plasma concentrations of 13C-16:0 and 13C-18:2 were consistently three- to eightfold higher in control rats than those in buffer-infused BD rats (P < 0.01). ID administration of either model bile or TC to BD rats restored plasma appearance of 13C-fatty acids at least to concentrations observed in control rats. Administration of PC + CH liposomes to BD rats partially reconstituted the plasma appearance of 13C-16:0, but did not affect that of 13C-18:2. Compared with control rats, the area under the curve (AUC) of plasma 13C-16:0 concentrations was 13.0 +/- 6.9% in buffer-infused rats and 40.9 +/- 3.1% in liposome-infused rats (P < 0.005). CONCLUSIONS: Enteral administration of PC + CH liposomes to BD rats partially corrects the absorption of palmitic acid. Present data suggest that administration of PC + CH liposomes could enhance fat absorption in clinical conditions of cholestasis in which bile salt supplemention is contraindicated.  相似文献   

10.
Cholesterol and saturated lipid species preferentially partition into liquid ordered microdomains, such as lipid rafts, away from unsaturated lipid species for which the sterol has less affinity in the surrounding liquid-disordered membrane. To observe how cholesterol interacts with unsaturated phospholipids, we have determined, from one-dimensional neutron scattering length density profiles, the depth of cholesterol in phosphatidylcholine (PC) bilayers with varying amounts of acyl chain unsaturation. Through the use of [2,2,3,4,4,6-(2)H(6)]-labeled cholesterol, we show that in 1-palmitoyl-2-oleoylphosphatidylcholine (16:0-18:1 PC), 1,2-dioleoylphosphatidylcholine (18:1-18:1 PC), and 1-stearoyl-2-arachidonylphosphatidylcholine (18:0-20:4 PC) bilayers the center of mass of the deuterated sites is approximately 16 A from the bilayer center. This location places the hydroxyl group of the sterol moiety at the hydrophobic/hydrophilic bilayer interface, which is the generally accepted position. In dramatic contrast, for 20:4-20:4 PC membranes the hydroxyl group is found, unequivocally, sequestered in the bilayer center. We attribute the change in location to the high disorder of polyunsaturated fatty acids (PUFA) that is incompatible with close proximity to the steroid moiety in its usual "upright" orientation.  相似文献   

11.
Lipid composition of plasma membranes from luteal cells was examined to determine whether changes in this organelle occur during regression and maintenance of the corpus luteum in nonpregnant (NP) and pregnant (P) ewes, respectively. Forty ewes were assigned to be killed on Day 13 or 15 of the estrous cycle (D13-NP and D15-NP) or pregnancy (D13-P and D15-P). Purification of luteal plasma membranes on discontinuous sucrose gradients yielded two fractions, designated F1 and F2, that exhibited the greatest enrichment of 5'-nucleotidase activity (five- and fourfold, respectively) over that of the homogenate. These fractions also yielded the lowest contamination by endoplasmic reticulum as represented by nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome C reductase activity and mitochondrial membranes as indicated by succinate dehydrogenase activity. Predominant phospholipids identified in membranes obtained from all groups were phosphatidylcholine (PC, 48.9 +/- 0.6% of total phospholipid), phosphatidylethanolamine (PE, 33.3 +/- 0.4%), sphingomyelin (SPH, 9.7 +/- 0.3%), phosphatidylserine (PS, 3.5 +/- 0.2%), and phosphatidylinositol (PI, 4.0 +/- 0.5%). No changes in microgram phospholipid/mg membrane protein were observed for any luteal phospholipid on D13 and 15 of the estrous cycle or pregnancy. No significant changes in the relative percentages of major fatty acids present in PC (palmitic [16:0], oleic [18:1]), PE (stearic [18:0], 18:1 and arachidonic [20:4]), or PS (18:0, 18:1, docosatetraenoic [22:4]), nor in the ratios of unsaturated (U) to saturated (S) fatty acids in these phospholipids were observed. Significant differences in unsaturated fatty acids of chain length greater than 20 carbons present in minor quantities in PC, PE, and PS were detected between NP and P ewes as well as between days within reproductive stage. The profile of major fatty acids present in PI revealed decreases in 18:0 and 20:4 in D15-NP and increases in 22:4 and docosapentaenoic acid (22:5) in luteal membranes of both D13- and D15-NP ewes relative to the levels of these fatty acids in PI of corresponding groups of pregnant ewes. There was a general trend for 20:4 levels of PC and PI in membranes of D15-NP ewes to be inversely related to those of D15-P ewes. Collectively, these changes were reflected by an increased U:S fatty acid ratio in luteal membrane PI during the estrous cycle. Specific binding of [125I] iodo-human chorionic gonadotropin to luteal plasma membranes from NP and P ewes on D13 and 15 (6/group) revealed similar affinities and concentrations of unoccupied luteinizing hormone (LH) receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The hepatic uptake, transport and utilization of plasma lysophosphatidylcholine (lysoPC) and its contribution to biliary lipid secretion have been investigated in bile-fistula rats. The animals were given a single intravenous dose of sn-1-[1-14C]palmitoyl-lysoPC, under constant intravenous sodium taurocholate infusion (1 mumol/min), and the fate of the label was followed in blood, bile and liver for up to 3 h. The livers were excised at given time points, extracted and/or homogenized to determine the lipid distribution and subcellular location of radioactivity. LysoPC was rapidly cleared from plasma, though a consistent fraction of the label persisted in plasma over the experimental time-period in the form of either lysoPC or PC. Recovery of radioactivity in the liver varied from 15.6% after 5 min to 19.5% after 3 h. Hepatic lysoPC underwent rapid microsomal acylation to form specific PC molecular species (mainly 16:0-20:4 and, to a lesser extent, 16:0-18:2 and 16:0-16:1). Ultrafiltration, dialysis and gel-chromatographic analyses of cytosolic fractions (post 105,000 X g supernatants) indicated that lysoPC is transported to the site of acylation mostly as a macromolecular aggregate with an approx. Mr of 14,400. Small amounts of radioactivity were secreted into bile over 3 h (20% in the form of lysoPC and the remainder as 16:0-18:2 and 16:0-20:4 PC species). Plasma lysoPC, taken up by the liver, is mostly transported by a cytosolic carrier with a molecular weight close to fatty-acid-binding proteins; it then enters a distinct acylation pathway, selective for some polyunsaturated-PC species and does not contribute significantly to biliary secretion, either directly, or through its products.  相似文献   

13.
Tritium-labeled synthetic fragments of human adrenocorticotropic hormone (ACTH) [3H]ACTH (11-24) and [3H]ACTH (15-18) with a specific activity of 22 and 26 Ci/mmol, respectively, were obtained. It was found that [3H]ACTH (11-24) binds to membranes of the rat adrenal cortex with high affinity and high specificity (Kd 1.8 +/- 0.1 nM). Twenty nine fragments of ACTH (11-24) were synthesized, and their ability to inhibit the specific binding of [3H]ACTH (11-24) to adrenocortical membranes was investigated. The shortest active peptide was found to be an ACTH fragment (15-18) (KKRR) (Ki 2.3 +/- 0.2 nM), whose [3H] labeled derivative binds to rat adrenocortical membranes (Kd 2.1 +/- 0.1 nM) with a high affinity. The specific binding of [3H]ACTH-(15-18) was inhibited by 100% by unlabeled ACTH (11-24) (Ki 2.0 +/- 0.1 nM). ACTH (15-18) in the concentration range of 1-1000 nM did not affect the adenylate cyclase activity of adrenocortical membranes and, therefore, is an antagonist of the ACTH receptor.  相似文献   

14.
The activity of the phosphatidylcholine transfer protein from bovine liver toward phosphatidylcholine isomers carrying a long and a short fatty acyl chain on either the sn-1- or sn-2-position was determined by way of the monolayer-vesicle assay. In this assay equimolar mixtures of the isomers were spread at the air/water interface and their transfer measured to the vesicles in the subphase initiated by addition of the transfer protein. The following isomers were tested: 1-decanoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C10:0/[3H]C18:1-PC) and 1-oleoyl-2-decanoyl-sn-glycero-3-phospho[14C]choline (C18:1/C10:0-[14C]PC); 1-lauroyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C12:0/[3H]C18:1-PC) and 1-oleoyl-2-[14C]lauroyl-sn-glycero-3-phosphocholine (C18:1/[14C]C12:0-PC); 1-myristoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C14:0/[3H]C18:1-PC) and 1-oleoyl,2-myristoyl-sn-glycero-3-phospho[14C]choline (C18:1/C14:0-[14C]PC). It was found that the protein transferred C10:0/[3H]C18:1-PC twice as fast as C18:1/C10:0-[14C]PC. Similar differences in rate were observed for C12:0/[3H]C18:1-Pc and C18:1/[14C]C12:0-PC but not for the isomers carrying myristic acid. We propose that the transfer protein can discriminate between PC isomers due to the presence of distinct binding sites for the sn-1- and sn-2-acyl chain (Berkhout et al. (1984) Biochemistry, 23, 1505-1513).  相似文献   

15.
The specificity of human plasma lecithin-cholesterol acyltransferase for molecular species of phosphatidylcholine (PC) was studied by determining the molecular species composition of whole plasma before and after incubation at 37 degrees C. Since the disappearance of PC under the conditions employed is entirely due to the activity of lecithin-cholesterol acyltransferase, its specificity can be determined from the decrease in the concentration of each species after the reaction. The selectivity factor for each species was calculated by dividing its observed contribution by its concentration at zero time. The major species contributing to cholesterol esterification in whole plasma were 16:0-18:2 (46%), 18:0-18:2 (16%), 16:0-18:1 (15%), 16:0-20:4 (10%), 18:0-20:4 (5%) and 18:1-18:2 (5%). The specificity, as determined from the selectivity factors for whole plasma, was in the order: 16:0-18:2 greater than 18:1-18:2 greater than 16:0-18:1 greater than 18:0-18:2 greater than 16:0-22:6 greater than 18:0-20:4 greater than 16:0-20:4. The high-density lipoproteins (HDL) contained a significantly higher percentage of 16:0-20:4 and 18:0-20:4 and a lower percentage of 16:0-18:1 and 18:0-18:1 compared to the very-low and low-density lipoproteins. These differences disappeared after incubation of the plasma for 24 h. Using selectivity factors for HDL PCs only, the specificity of the enzyme was found to be in the order: 16:0-18:2 greater than 18:1-18:2 greater than 18:1-18:1 greater than 16:0-22:6 greater than 18:0-18:2 greater than 16:0-18:1 greater than 16:0-20:4. These results indicate that in native plasma, lecithin-cholesterol acyltransferase prefers 16:0 greater than 18:1 greater than 18:0 at the 1-position and 18:2 greater than 18:1 greater than 22:6 greater than 20:4 at the 2-position of PC.  相似文献   

16.
Boraginaceae seeds are particularly rich in Γ -linolenic acid (6,9,12-octadecatrienoic acid, Γ -18:3). In microsomes, the analysis of phosphatidylcholine (PC) molecular species by HPLC led to identification of 15 different molecular species; among them 4 contained Γ -18:3, mostly at position 2 of sn -glycerol. Time courses of acylation and desaturation in PC molecular species were examined when [14C]oleoyl-CoA or [14C]linoleoyl-CoA was provided as substrates to isolated microsomes. With [14C]oleoyl-CoA or [14C]linoleoyl-CoA and in the absence of NADH, 3 main labelled PC molecular species were found: 18:2/[14C]18:1, 16:0/[14C]18:1 and 18:1/[14C]18:1. When NADH was present in the incubation medium, the fatty acids were progressively desaturated by the Δ12- and Δ6-desaturases successively (with [14C]oleoyl-CoA as precursor) or by the Δ6-desaturase alone (with [14C]linoleoyl-CoA as precursor). In both types of experiments, 7 final desaturation products in microsomes were evidenced; among them, 3 contained radioactive Γ -18:3, i.e . 18:2/[14C] Γ -18:3, 18:1/[14C] Γ -18:3 and 16:0/[14C] Γ -18:3. While the Δ12-desaturase had no specificity for position on the glycerol backbone, labelled Γ -linolenic acid was recovered exclusively in the sn -2 position.  相似文献   

17.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

18.
The role of membrane composition in modulating the rate of G protein-receptor complex formation was examined using rhodopsin and transducin (G(t)) as a model system. Metarhodopsin II (MII) and MII-G(t) complex formation rates were measured, in the absence of GTP, via flash photolysis for rhodopsin reconstituted in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC) bilayers, with and without 30 mol% cholesterol. Variation in bilayer lipid composition altered the lifetime of MII-G(t) formation to a greater extent than the lifetime of MII. MII-G(t) formation was fastest in 18:0,22:6PC and slowest in 18:0,18:1PC/30 mol% cholesterol. At 37 degrees C and a G(t) to photolyzed rhodopsin ratio of 1:1 in 18:0,22:6PC bilayers, MII-G(t) formed with a lifetime of 0.6 +/- 0.06 ms, which was not significantly different from the lifetime for MII formation. Incorporation of 30 mol% cholesterol slowed the rate of MII-G(t) complex formation by about 400% in 18:0,18:1PC, but by less than 25% in 18:0,22:6PC bilayers. In 18:0,22:6PC, with or without cholesterol, MII-G(t) formed rapidly after MII formed. In contrast, cholesterol in 18:0,18:1PC induced a considerable lag time in MII-G(t) formation after MII formed. These results demonstrate that membrane composition is a critical factor in determining the temporal response of a G protein-coupled signaling system.  相似文献   

19.
An improved technique for the analysis of phosphatidylcholine (PC) and lyso-phosphatidylcholine (lyso-PC) oxidation products was developed using quadrupole time of flight (Q-TOF) mass spectrometry with electrospray ionization. We separated these products using an HPLC C(8) column with a gradient of methanol and 10mM aqueous ammonium acetate. Monohydroxides, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl (C16:0/C18:2) PC, stearoyl-linoleoyl (C18:0/C18:2) PC, and oleoyl-linoleoyl (C18:1/C18:2) PC were detected mainly as MH(+) and [M+Na](+) ions in the heart of the intact rat. Using standard synthetic PC-OH (C16:0/C18:2-OH), the lipid extract component was identified as (C16:0/C18:2-OH) PC based on the product ions of ESI-MS-MS and, the PC-OH concentration was quantitated. Four oxidatively modified 1-lyso-phosphatidylcholines (lyso-PCs) were also detected. This is the first report showing the presence of monohydroxides, oxo derivatives, and trihydroxides of (C16:0/C18:2)PC, (C18:0/C18:2)PC, and (C18:1/C18:2) PC in the rat heart.  相似文献   

20.
The appearance of individual molecular species of phospholipids in the complete sequence of the transmethylation of phosphatidylethanolamine (PE) was examined in rat liver microsomes incubated with S-adenosyl-L-[methyl-14C]methionine. Reverse-phase HPLC analysis of phosphatidylcholine (PC), phosphatidyl-N,N-dimethylethanolamine (dimethyl-PE), or phosphatidyl-N-monomethylethanolamine (monomethyl-PE) showed that radioactivity was present in the same six principal molecules; a first group is constituted by 16:0/22:6, 16:0/20:4 and 16:0/18:2 and a second one by the homologous molecules with 18:0 instead of 16:0 at the sn-1 position of glycerol. In PC, 16:0/22:6 (23% of total radioactivity) was preponderant, and 18:0/20:4 was the lowest. The ratios cpm in PC/nmol in PE were in the order: 16:0/22:6 greater than 16:0/18:2 greater than 16:0/20:4 followed by the corresponding 18:0 molecules. On the other hand, in intermediate phospholipids, incorporation of methyl groups was most marked in 18:0/20:4 (24-27% of total). 16:0/22:6 and 16:0/18:2 were low in comparison to their relative values in PC. The ratio (18:0/20:4)/(16:0/22:6) was 4.5-5.6-times higher in monomethyl-PE and dimethyl-PE than in PC. These differences were found consistently, regardless of incubation time of microsomes (2.5-60 min) and of S-adenosyl-L-methionine (AdoMet) concentration (3 or 100 microM). In liver membranes, it would therefore seem that there is a different selectivity in methyl group transfer, depending upon whether the first two steps or the third step of the reaction are considered. Side reactions, such as deacylation/reacylation, are unlikely to account for this difference, which could rather be related to the enzyme itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号