首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the yeast Saccharomyces cerevisiae, ultradian oscillations of energy metabolism have been observed in continuous cultures. Here, we found that the level of the GTS1 gene product oscillated in concert with the ultradian rhythm of energy metabolism. When GTS1 was inactivated by gene disruption, the metabolic oscillation was affected severely, mostly disappearing within a day, in the absence of synchronized stress-response oscillations throughout the continuous culture. The disappearance of biological rhythms in the GTS1-deleted mutant was substantially rescued by transformation with chimera plasmids carrying GTS1 under the control of GTS1's own promoter. On the other hand, this disappearance was not rescued by constitutive expression of GTS1 under the control of the triose phosphate isomerase promoter.  相似文献   

3.
We previously reported that GTS1 is involved in regulating ultradian oscillations of the glycolytic pathway induced by cyanide in cell suspensions as well as oscillations of energy metabolism in aerobic continuous cultures. Here, we screened a yeast cDNA library for proteins that bind to Gts1p using the yeast two-hybrid system and cloned multiple TDH cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found that the zinc-finger and dimerization sites of Gts1p were required for full ability to bind GAPDH, and Gts1ps mutated at these sites lost the ability to regulate both aerobic and unaerobic ultradian oscillations of energy metabolism. Of the three TDH genes, only TDH1 fluctuated at the mRNA level in continuous culture and its deletion resulted in the disappearance of the oscillation without any affect on growth rate. This loss of biological rhythms in the TDH1-deleted mutant was rescued by the expression of TDH1 but not of TDH2 or TDH3 under the control of the TDH1 promoter. Thus, we hypothesized that Gts1p plays a role in the regulation of metabolic oscillation by interacting with the TDH1 product, GAPDH1, in yeast.  相似文献   

4.
Heat resistance appears to cycle in concert with energy metabolism in continuous culture of the yeast Saccharomyces cerevisiae. To study the mechanism of this oscillation, the authors first examined if heat shock proteins (Hsps) are involved. Neither the protein levels of major Hsps nor the expression of the β-galactosidase gene as a reporter under the control of the promoter carrying heat-shock element oscillated during the metabolic oscillation. The level of trehalose in yeast cycled with the same periodicity, as did energy metabolism. This oscillation was not found in a GTS1-deleted mutant that also did not show cyclic changes in heat resistance. These results suggest that heat resistance oscillation is induced by fluctuations in trehalose level and not by an oscillatory expression of Hsps. The increase in trehalose began at the start of the respiro-fermentative phase and the decrease began after the elevation of the cyclic adenosine monophosphate (cAMP) level. The authors hypothesize that the synthesis of trehalose parallels the activation of the glycolytic pathway and that trehalose is degraded by trehalase activated by cAMP coupled with the metabolic oscillation in the continuous culture of yeast.  相似文献   

5.
The red blood cell when transported through the circulatory system is exposed to a steady (approximately periodical) change of environmental conditions causing a permanent fluctuation of its important metabolic parameters. In a simple theoretical model it is demonstrated that a rapid oscillation of such parameters may stabilize a metabolic state which will collapse when this oscillation breaks off. The hypothesis is advanced that parameter oscillations caused by the physiological function of the red blood cell may be of importance for the maintenance of its energy metabolism and that the break-off of these oscillations may be a potential cause for the metabolic collapse, e.g. in stored blood.  相似文献   

6.
Yeast cells exhibit sustained ultradian oscillations of energy metabolism in coupling with cell cycle and stress resistance oscillations in continuous culture. We have reported that the rhythmic expression of Gts1p is important for the maintenance of ultradian rhythms. Structurally, Gts1p contains sequence motifs similar to N-degron and the ubiquitin association domain, raising the possibility that the Gts1p level is regulated by degradation via ubiquitination. When the lysine residue at the putative ubiquitination site of the N-degron was substituted with arginine, both the protein level and half-life of mutant Gts1p increased. During continuous culture, the protein level of the mutant Gts1p was elevated and did not fluctuate, leading to the disappearance of metabolic oscillation within a day. Furthermore, using three Gts1ps containing mutations in the ubiquitin association domain, we showed that the lower the binding activity of the mutant Gts1ps for polyubiquitin in vitro, the higher the protein level in vivo. Expression of the mutant Gts1ps in the continuous culture resulted in an increase in Gts1p and early loss of the oscillation. Therefore, Gts1p is degraded through conjugation with ubiquitin, and the UBA domain promoted the degradation of ubiquitinated Gts1p, causing a fluctuation in protein level, which is required for the maintenance of metabolic oscillations.  相似文献   

7.
A major role of the liver is to integrate multiple signals to maintain normal blood glucose levels. The balance between glucose storage and mobilization is primarily regulated by the counteracting effects of insulin and glucagon. However, numerous signals converge in the liver to ensure energy demand matches the physiological status of the organism. Many circulating hormones regulate glycogenolysis, gluconeogenesis and mitochondrial metabolism by calcium-dependent signaling mechanisms that manifest as cytosolic Ca2+ oscillations. Stimulus-strength is encoded in the Ca2+ oscillation frequency, and also by the range of intercellular Ca2+ wave propagation in the intact liver. In this article, we describe how Ca2+ oscillations and waves can regulate glucose output and oxidative metabolism in the intact liver; how multiple stimuli are decoded though Ca2+ signaling at the organ level, and the implications of Ca2+ signal dysregulation in diseases such as metabolic syndrome and non-alcoholic fatty liver disease.  相似文献   

8.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

9.
生物钟调控机制广泛存在于各种类型的细胞中,控制着细胞代谢的节律性变化.最近的研究发现,NAD+依赖的组蛋白去乙酰化酶Sirt1参与了生物钟调控过程,对维持正常的生物钟节律具有重要作用;另一方面,Sirt1的表达也受到生物钟系统的调控,呈现出昼夜节律性的表达.因此Sirt1能与生物钟进行相互调控,并且这一作用机制很可能广泛参与了不同类型细胞内的信号转导和能量代谢过程.本文总结了Sirt1与生物钟之间相互调控的一些研究进展,对它们之间的分子调控机制进行了概述.  相似文献   

10.
Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms.  相似文献   

11.
The role of glutathione (GSH) and its homeodynamics during respiratory oscillation of Saccharomyces cerevisiae were investigated. Pulse injection of thiol redox modifying agents, such as diethylmaleate, N-ethylmaleimide, DL-butione-[S,R]-sulfoxamine, or 5-nitro-2-furaldehyde into the culture perturbed oscillation, although the degree of perturbation varied. Analysis of the expression profiles of GSH1 and GLR1, the activities of glutathione reductase, oscillations in cysteine and GSH concentrations, and the chemostat culture of the GLR1 disruptant indicated that GLR1 plays an essential role in the homeodynamics of GSH and the regulation of H(2)S production.  相似文献   

12.
Melatonin induces oscillations in the peroxidase-oxidase (PO) reaction catalyzed by horseradish peroxidase. We present here studies of the effect of pH, enzyme concentration, and concentration of melatonin on the oscillation frequency. We also present a mechanistic model to explain the experimentally observed changes in oscillation frequency. Using the data obtained here we are able to predict that oscillations will also occur in the PO reaction catalyzed by myeloperoxidase. Myeloperoxidase is an important protein in activated neutrophils and we provide evidence that the oscillations of NAD(P)H, superoxide and hydrogen peroxide in these cells may involve this enzyme. Thus, our experimental system can be considered a model system for the nonrespiratory oxygen metabolism in activated neutrophils and other similar cells participating in the defence against invading pathogens.  相似文献   

13.
R Simkus 《Luminescence》2006,21(2):77-80
Under adjusted experimental conditions, open-to-air cultures of lux gene-engineered Ralstonia eutropha (wholecell biosensors of copper) exhibit bioconvection, which accounts for fluctuating bioluminescence. The power spectrum of bioluminescence intensity fluctuations recorded from a cylindrical sample 9 mm in diameter and approximately 10 mm in height is characterized by a dominant low-frequency oscillation (with a characteristic period of approximately 8-12 min), which is occasionally accompanied by a few weaker oscillations. The corresponding spectral peaks emerge on a high-noise background. The spectra of bioluminescence intensity fluctuations qualitatively resemble the spectra of temperature or fluid velocity fluctuations in an appropriate turbulent thermal convection system. It has been suggested that in a bioconvective system, like in thermal convection systems, the emergence of oscillation reflects the large-scale convective circulation that spans the height of the cylindrical cell. The velocity of large-scale bioconvective circulation was estimated to be 37-48 microm/s. The occasional emergence of weaker-than-dominant oscillations was explained through the coexistence and interaction of the large-scale circulation with, presumably, a gene-expression-related cyclic process (with a characteristic period of approximately 25-50 min).  相似文献   

14.
Changes in the intramuscular pH oscillations were examined by the use of an antimony electrode upon perfusing the isolated rat heart under different experimental conditions. The pH oscillations were decreased upon perfusing the hearts with Na+- or Ca2+-free medium and increased upon perfusing with K+-free medium. Increasing the temperature of perfusion medium from 25 to 40 degrees C or omitting glucose from the perfusing medium decreased the magnitude of oscillations. On the other hand, complete interruption of the perfusion flow resulted in an increase in the amplitude of pH oscillation. An initial increase followed by a decrease in the pH oscillation was seen when hearts were perfused with medium containing lactic acid at pH 6.6. These results suggest that pH oscillations reflect fluctuations in myocardial metabolism.  相似文献   

15.
A model of the oscillatory metabolism of activated neutrophils   总被引:1,自引:0,他引:1       下载免费PDF全文
We present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration. The period of oscillation changes from >200 s to 10-30 s. The model is consistent with previously reported oscillations in cell metabolism and oxidant production. Key features and predictions of the model were confirmed experimentally. The requirement of the hexose monophosphate pathway for 10 s oscillations was verified using 6-aminonicotinamide and dexamethasone, which are inhibitors of glucose-6-phosphate dehydrogenase. The role of the NADPH oxidase in promoting oscillations was confirmed by dose-response studies of the effect of diphenylene iodonium, an inhibitor of the NADPH oxidase. Moreover, the model predicted an increase in the amplitude of NADPH oscillations in the presence of melatonin, which was confirmed experimentally. Successful computer modeling of complex chemical dynamics within cells and their chemical perturbation will enhance our ability to identify new antiinflammatory compounds.  相似文献   

16.
Hair cells of the inner ear can power spontaneous oscillations of their mechanosensory hair bundle, resulting in amplification of weak inputs near the characteristic frequency of oscillation. Recently, dynamic force measurements have revealed that delayed gating of the mechanosensitive ion channels responsible for mechanoelectrical transduction produces a friction force on the hair bundle. The significance of this intrinsic source of dissipation for the dynamical process underlying active hair-bundle motility has remained elusive. The aim of this work is to determine the role of friction in spontaneous hair-bundle oscillations. To this end, we characterized key oscillation properties over a large ensemble of individual hair cells and measured how viscosity of the endolymph that bathes the hair bundles affects these properties. We found that hair-bundle movements were too slow to be impeded by viscous drag only. Moreover, the oscillation frequency was only marginally affected by increasing endolymph viscosity by up to 30-fold. Stochastic simulations could capture the observed behaviors by adding a contribution to friction that was 3?8-fold larger than viscous drag. The extra friction could be attributed to delayed changes in tip-link tension as the result of the finite activation kinetics of the transduction channels. We exploited our analysis of hair-bundle dynamics to infer the channel activation time, which was ~1 ms. This timescale was two orders-of-magnitude shorter than the oscillation period. However, because the channel activation time was significantly longer than the timescale of mechanical relaxation of the hair bundle, channel kinetics affected hair-bundle dynamics. Our results suggest that friction from channel gating affects the waveform of oscillation and that the channel activation time can tune the characteristic frequency of the hair cell. We conclude that the kinetics of transduction channels’ gating plays a fundamental role in the dynamic process that shapes spontaneous hair-bundle oscillations.  相似文献   

17.
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.  相似文献   

18.
The oscillation phenomena reported in the preceding article for the anaerobic continuous fermentation of glycerol by Klebsiella pneumoniae are analyzed in terms of metabolic fluxes (metabolic rates and yields) and stoichiometry of pathways. Significant oscillations in the fluxes of CO(2), H(2), formic acid, ethanol, and reducing equivalents are observed which show obvious relationships to each other. Changes in the consumption or production rates of glycerol, acetic acid, 1,3-propanediol, and ATP are irregular and have relatively small amplitudes compared with their absolute values. By comparing the metabolic fluxes under oscillation and steady state that have nearly the same environmental conditions it could be shown that pyruvate metabolism is the main step affected under oscillation conditions. The specific formation rates of all the products originating from pyruvate metabolism (CO(2), H(2), formic acid, ethanol, acetic acid, lactic acid, and 2,3-butanediol) show significant differences under conditions of oscillation and steady state. In contrast, the specific rates of substrate uptake, ATP generation, and formation of products deriving either directly from glycerol (1,3-propanediol) or from the upstream of pyruvate metabolism (e.g., succinic acid) are not, or at least not significantly, affected during oscillation. Stoichiometric analysis of metabolic pathways confirms that other enzyme systems, in addition to pyruvate: formate-lyase, must be simultaneously involved in the pyruvate decarboxylation under both oscillation and steady-state conditions. The results strongly suggest oscillations of activities of these enzymes under oscillation conditions. It appears that the reason for the occurrence of oscillation and hysteresis lies in an unstable regulation of pyruvate metabolism of different enzymes triggered by substrate excess and drastic change(s) of environmental conditions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
20.
The main stages of investigation into the changes of the heart rate in human (HRH), are presented. A satisfactory coincidence of results of the HRH oscillation power estimation within two frequency ranges obtained with the aid of two techniques: by the Yamamoto algorithm and by search for sources of non-harmonic oscillations, was shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号