首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amidotransferase family of enzymes utilizes the ammonia derived from the hydrolysis of glutamine for a subsequent chemical reaction catalyzed by the same enzyme. The ammonia intermediate does not dissociate into solution during the chemical transformations. A well-characterized example of the structure and mechanism displayed by this class of enzymes is provided by carbamoyl phosphate synthetase (CPS). Carbamoyl phosphate synthetase is isolated from Escherichia coli as a heterodimeric protein. The smaller of the two subunits catalyzes the hydrolysis of glutamine to glutamate and ammonia. The larger subunit catalyzes the formation of carbamoyl phosphate using 2 mol of ATP, bicarbonate, and ammonia. Kinetic investigations have led to a proposed chemical mechanism for this enzyme that requires carboxy phosphate, ammonia, and carbamate as kinetically competent reaction intermediates. The three-dimensional X-ray crystal structure of CPS has localized the positions of three active sites. The nucleotide binding site within the N-terminal half of the large subunit is required for the phosphorylation of bicarbonate and subsequent formation of carbamate. The nucleotide binding site within the C-terminal domain of the large subunit catalyzes the phosphorylation of carbamate to the final product, carbamoyl phosphate. The three active sites within the heterodimeric protein are separated from one another by about 45 A. The ammonia produced within the active site of the small subunit is the substrate for reaction with the carboxy phosphate intermediate that is formed in the active site found within the N-terminal half of the large subunit of CPS. Since the ammonia does not dissociate from the protein prior to its reaction with carboxy phosphate, this intermediate must therefore diffuse through a molecular tunnel that connects these two sites with one another. Similarly, the carbamate intermediate, initially formed at the active site within the N-terminal half of the large subunit, is the substrate for phosphorylation by the ATP bound to the active site located in the C-terminal half of the large subunit. A molecular passageway has been identified by crystallographic methods that apparently facilitates diffusion between these two active sites within the large subunit of CPS. Synchronization of the chemical transformations is controlled by structural perturbations among the three active sites. Molecular tunnels between distant active sites have also been identified in tryptophan synthase and glutamine phosphoribosyl pyrophosphate amidotransferase and are likely architectural features in an expanding list of enzymes.  相似文献   

2.
Huang X  Raushel FM 《Biochemistry》2000,39(12):3240-3247
The heterodimeric carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme catalyzes the hydrolysis of glutamine within the small amidotransferase subunit and then transfers ammonia to the two active sites within the large subunit. These three active sites are connected via an intermolecular tunnel, which has been located within the X-ray crystal structure of CPS from E. coli. It has been proposed that the ammonia intermediate diffuses through this molecular tunnel from the binding site for glutamine within the small subunit to the phosphorylation site for bicarbonate within the large subunit. To provide experimental support for the functional significance of this molecular tunnel, residues that define the interior walls of the "ammonia tunnel" within the small subunit were targeted for site-directed mutagenesis. These structural modifications were intended to either block or impede the passage of ammonia toward the large subunit. Two mutant proteins (G359Y and G359F) display kinetic properties consistent with a constriction or blockage of the ammonia tunnel. With both mutants, the glutaminase and bicarbonate-dependent ATPase reactions have become uncoupled from one another. However, these mutant enzymes are fully functional when external ammonia is utilized as the nitrogen source but are unable to use glutamine for the synthesis of carbamoyl-P. These results suggest the existence of an alternate route to the bicarbonate phosphorylation site when ammonia is provided as an external nitrogen source.  相似文献   

3.
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicarbonate the second-order rate constant for inactivation of CPS was reduced by a factor of 200. The enzyme was protected against inactivation by the inclusion of glutamine in the reaction mixture. The ammonia-dependent activities were unaffected by the incubation of CPS with acivicin. These results are consistent with the covalent labeling of the glutamine-binding site located within the small amidotransferase subunit. The binding of ATP and bicarbonate to the large subunit of CPS must also induce a conformational change within the amidotransferase domain of the small subunit that enhances the nucleophilic character of the thiol group required for glutamine hydrolysis. The acivicin-inhibited enzyme was crystallized, and the three-dimensional structure was determined by x-ray diffraction techniques. The thiol group of Cys-269 was covalently attached to the dihydroisoxazole ring of acivicin with the displacement of a chloride ion.  相似文献   

4.
The x-ray crystal structure of the heterodimeric carbamoyl phosphate synthetase from Escherichia coli has identified an intermolecular tunnel that connects the glutamine binding site within the small amidotransferase subunit to the two phosphorylation sites within the large synthetase subunit. The tunneling of the ammonia intermediate through the interior of the protein has been proposed as a mechanism for the delivery of the ammonia from the small subunit to the large subunit. A series of mutants created within the ammonia tunnel were prepared by the placement of a constriction via site-directed mutagenesis. The degree of constriction within the ammonia tunnel of these enzymes was found to correlate to the extent of the uncoupling of the partial reactions, the diminution of carbamoyl phosphate formation, and the percentage of the internally derived ammonia that is channeled through the ammonia tunnel. NMR spectroscopy and a radiolabeled probe were used to detect and identify the enzymatic synthesis of N-amino carbamoyl phosphate and N-hydroxy carbamoyl phosphate from hydroxylamine and hydrazine. The kinetic results indicate that hydroxylamine, derived from the hydrolysis of gamma-glutamyl hydroxamate, is channeled through the ammonia tunnel to the large subunit. Discrimination between the passage of ammonia and hydroxylamine was observed among some of these tunnel-impaired enzymes. The overall results provide biochemical evidence for the tunneling of ammonia within the native carbamoyl phosphate synthetase.  相似文献   

5.
Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase.  相似文献   

6.
Huang X  Raushel FM 《Biochemistry》1999,38(48):15909-15914
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a gamma-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the H353N mutant, Ser-47 and Gln-273 interact with the gamma-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831]. The mutants E355D and E355A have elevated values of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed. E355Q does not significantly affect the bicarbonate-dependent ATPase or glutaminase partial reactions. However, this mutation almost completely uncouples the two partial reactions such that no carbamoyl phosphate is produced. The partial recovery of carbamoyl phosphate synthesis activity in the double mutant E355Q/K202M argues that the loss of activity in E355Q is at least partly due to additional interactions between Gln-355 and Lys-202 in E355Q. The mutants S47A and Q273A have elevated K(m) values for glutamine while the V(max) values are comparable to that of the wild-type enzyme. It is concluded that contrary to the original proposal for the catalytic triad, Glu-355 is not an essential residue for catalysis. The results are consistent with Ser-47 and Gln-273 playing significant roles in the binding of glutamine.  相似文献   

7.
Kim J  Howell S  Huang X  Raushel FM 《Biochemistry》2002,41(42):12575-12581
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli has unveiled the existence of two molecular tunnels within the heterodimeric enzyme. These two interdomain tunnels connect the three distinct active sites within this remarkably complex protein and apparently function as conduits for the transport of unstable reaction intermediates between successive active sites. The operational significance of the ammonia tunnel for the migration of NH3 is supported experimentally by isotope competition and protein modification. The passage of carbamate through the carbamate tunnel has now been assessed by the insertion of site-directed structural blockages within this tunnel. Gln-22, Ala-23, and Gly-575 from the large subunit of CPS were substituted by mutagenesis with bulkier amino acids in an attempt to obstruct and/or hinder the passage of the unstable intermediate through the carbamate tunnel. The structurally modified proteins G575L, A23L/G575S, and A23L/G575L exhibited a substantially reduced rate of carbamoyl phosphate synthesis, but the rate of ATP turnover and glutamine hydrolysis was not significantly altered. These data are consistent with a model for the catalytic mechanism of CPS that requires the diffusion of carbamate through the interior of the enzyme from the site of synthesis within the N-terminal domain of the large subunit to the site of phosphorylation within the C-terminal domain. The partial reactions of CPS have not been significantly impaired by these mutations, and thus, the catalytic machinery at the individual active sites has not been functionally perturbed.  相似文献   

8.
Carbamoyl phosphate synthetase plays a key role in both pyrimidine and arginine biosynthesis by catalyzing the production of carbamoyl phosphate from one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli consists of two polypeptide chains referred to as the small and large subunits, which contain a total of three separate active sites that are connected by an intramolecular tunnel. The small subunit harbors one of these active sites and is responsible for the hydrolysis of glutamine to glutamate and ammonia. The large subunit binds the two required molecules of MgATP and is involved in assembling the final product. Compounds such as L-ornithine, UMP, and IMP allosterically regulate the enzyme. Here, we report the three-dimensional structure of a site-directed mutant protein of carbamoyl phosphate synthetase from E. coli, where Cys 248 in the small subunit was changed to an aspartate. This residue was targeted for a structural investigation because previous studies demonstrated that the partial glutaminase activity of the C248D mutant protein was increased 40-fold relative to the wild-type enzyme, whereas the formation of carbamoyl phosphate using glutamine as a nitrogen source was completely abolished. Remarkably, although Cys 248 in the small subunit is located at approximately 100 A from the allosteric binding pocket in the large subunit, the electron density map clearly revealed the presence of UMP, although this ligand was never included in the purification or crystallization schemes. The manner in which UMP binds to carbamoyl phosphate synthetase is described.  相似文献   

9.
Carbamoyl phosphate synthetases (CPSs) utilize either glutamine or ammonia for the ATP-dependent generation of carbamoyl phosphate. In glutamine-utilizing CPSs (e.g. the single Escherichia coli CPS and mammalian CPS II), the hydrolysis of glutamine to yield ammonia is catalyzed at a triad-type glutamine amidotransferase domain. Non-glutamine-utilizing CPSs (e.g. rat and human CPS I), lacking the catalytic cysteine residue, can generate carbamoyl phosphate only in the presence of free ammonia. Frog CPS I (fCPS I), unlike mammalian CPS Is, retains most of the glutamine amidotransferase residues conserved in glutamine-utilizing CPSs, including an intact catalytic triad, and could therefore be expected to use glutamine. Our work with native fCPS I provides the first demonstration of the inability of this enzyme to bind/utilize glutamine. To determine why fCPS I is unable to utilize glutamine, we compared sequences of glutamine-using and non-glutamine-using CPSs to identify residues that are present or conservatively substituted in all glutamine-utilizing CPSs but absent in fCPS I. We constructed the site-directed mutants Q273E, L270K, Q273E/N240S, and Q273E/L270K in E. coli CPS and have determined that simultaneous occurrence of the two substitutions, Gln-->Glu and Leu-->Lys, found in the frog CPS I glutamine amidotransferase domain are sufficient to eliminate glutamine utilization by the E. coli enzyme.  相似文献   

10.
S G Miran  S H Chang  F M Raushel 《Biochemistry》1991,30(32):7901-7907
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic activities of the H272N and H341N mutants are not significantly different than that of the wild-type enzyme. The H353N mutant is unable to utilize glutamine as a nitrogen source in the synthetase reaction or the partial glutaminase reaction. However, binding to the glutamine active site is not impaired in the H353N enzyme since glutamine is found to activate the partial ATPase reaction by 40% with a Kd of 54 microM. The H312N mutant has a Michaelis constant for glutamine that is 2 orders of magnitude larger than the wild-type value, but the maximal rate of glutamine hydrolysis is unchanged. These results are consistent with His-353 functioning as a general acid/base catalyst for proton transfers while His-312 serves a critical role for the binding of glutamine to the active site.  相似文献   

11.
Thoden JB  Huang X  Raushel FM  Holden HM 《Biochemistry》1999,38(49):16158-16166
Carbamoyl phosphate synthetase (CPS) plays a key role in both arginine and pyrimidine biosynthesis by catalyzing the production of carbamoyl phosphate. The enzyme from Escherichi coli consists of two polypeptide chains referred to as the small and large subunits. On the basis of both amino acid sequence analyses and X-ray structural studies, it is known that the small subunit belongs to the Triad or Type I class of amidotransferases, all of which contain a cysteine-histidine (Cys269 and His353) couple required for activity. The hydrolysis of glutamine by the small subunit has been proposed to occur via two tetrahedral intermediates and a glutamyl-thioester moiety. Here, we describe the three-dimensional structures of the C269S/glutamine and CPS/glutamate gamma-semialdehyde complexes, which serve as mimics for the Michaelis complex and the tetrahedral intermediates, respectively. In conjunction with the previously solved glutamyl-thioester intermediate complex, the stereochemical course of glutamine hydrolysis in CPS has been outlined. Specifically, attack by the thiolate of Cys269 occurs at the Si face of the carboxamide group of the glutamine substrate leading to a tetrahedral intermediate with an S-configuration. Both the backbone amide groups of Gly241 and Leu270, and O(gamma) of Ser47 play key roles in stabilizing the developing oxyanion. Collapse of the tetrahedral intermediate leads to formation of the glutamyl-thioester intermediate, which is subsequently attacked at the Si face by an activated water molecule positioned near His353. The results described here serve as a paradigm for other members of the Triad class of amidotranferases.  相似文献   

12.
Kim J  Raushel FM 《Biochemistry》2004,43(18):5334-5340
Carbamoyl phosphate synthetase (CPS) from Escherichia coli consists of a small subunit (approximately 42 kDa) and a large subunit (approximately 118 kDa) and catalyzes the biosynthesis of carbamoyl phosphate from MgATP, bicarbonate, and glutamine. The enzyme is able to utilize external ammonia as an alternative nitrogen source when glutamine is absent. CPS contains an internal molecular tunnel, which has been proposed to facilitate the translocation of reaction intermediates from one active site to another. Ammonia, the product from the hydrolysis of glutamine in the small subunit, is apparently transported to the next active site in the large subunit of CPS over a distance of about 45 A. The ammonia tunnel that connects these two active sites provides a direct path for the guided diffusion of ammonia and protection from protonation. Molecular damage to the ammonia tunnel was conducted in an attempt to induce leakage of ammonia directly to the protein exterior by the creation of a perforation in the tunnel wall. A hole in the tunnel wall was made by mutation of integral amino acid residues with alanine residues. The triple mutant alphaP360A/alphaH361A/betaR265A was unable to utilize glutamine for the synthesis of carbamoyl phosphate. However, the mutant enzyme retained full catalytic activity when external ammonia was used as the nitrogen source. The synchronization of the partial reactions occurring at the three active sites observed with the wild-type CPS was seriously disrupted with the mutant enzyme when glutamine was used as a nitrogen source. Overall, the catalytic constants of the mutant were consistent with the model where the channeling of ammonia has been disrupted due to the leakage from the ammonia tunnel to the protein exterior.  相似文献   

13.
Aquifex aeolicus, an extreme hyperthermophile, has neither a full-length carbamoyl-phosphate synthetase (CPSase) resembling the enzyme found in all mesophilic organisms nor a carbamate kinase-like CPSase such as those present in several hyperthermophilic archaea. However, the genome has open reading frames encoding putative proteins that are homologous to the major CPSase domains. The glutaminase, CPS.A, and CPS.B homologs from A. aeolicus were cloned, overexpressed in Escherichia coli, and purified to homogeneity. The isolated proteins could catalyze several partial reactions but not the overall synthesis of carbamoyl phosphate. However, a stable 124-kDa complex could be reconstituted from stoichiometric amounts of CPS.A and CPS.B proteins that synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia. The inclusion of the glutaminase subunit resulted in the formation of a 171-kDa complex that could utilize glutamine as the nitrogen-donating substrate, although the catalytic efficiency was significantly compromised. Molecular modeling, using E. coli CPSase as a template, showed that the enzyme has a similar structural organization and interdomain interfaces and that all of the residues known to be essential for function are conserved and properly positioned. A steady state kinetic study at 78 degrees C indicated that although the substrate affinity was similar for bicarbonate, ammonia, and glutamine, the K(m) for ATP was appreciably higher than that of any known CPSase. The A. aeolicus complex, with a split gene encoding the major synthetase domains and relatively inefficient coupling of amidotransferase and synthetase functions, may be more closely related to the ancestral precursor of contemporary mesophilic CPSases.  相似文献   

14.
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these belongs to the Class I amidotransferase superfamily and contains all of the necessary amino acid side chains required for the hydrolysis of glutamine to glutamate and ammonia. Two homologous domains from the larger subunit adopt conformations that are characteristic for members of the ATP-grasp superfamily. Each of these ATP-grasp domains contains an active site responsible for binding one molecule of MgATP. High resolution x-ray crystallographic analyses have shown that, remarkably, the three active sites in the E. coli enzyme are connected by a molecular tunnel of approximately 100 A in total length. Here we describe the high resolution x-ray crystallographic structure of the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase. This residue was initially targeted for study because it resides within the interior wall of the molecular tunnel leading from the active site of the small subunit to the first active site of the large subunit. It was anticipated that a mutation to the larger residue would "clog" the ammonia tunnel and impede the delivery of ammonia from its site of production to the site of utilization. In fact, the G359F substitution resulted in a complete change in the conformation of the loop delineated by Glu-355 to Ala-364, thereby providing an "escape" route for the ammonia intermediate directly to the bulk solvent. The substitution also effected the disposition of several key catalytic amino acid side chains in the small subunit active site.  相似文献   

15.
Miles BW  Raushel FM 《Biochemistry》2000,39(17):5051-5056
Carbamoyl phosphate synthetase from E. coli catalyzes the synthesis of carbamoyl phosphate through a series of four reactions occurring at three active sites connected by a molecular tunnel of 100 A. To understand the mechanism for coordination and synchronization among the active sites, the pre-steady-state time courses for the formation of phosphate, ADP, glutamate, and carbamoyl phosphate were determined. When bicarbonate and ATP were rapidly mixed with CPS, a stoichiometric burst of acid-labile phosphate and ADP was observed with a formation rate constant of 1100 min(-)(1). The burst phase was followed by a linear steady-state phase with a rate constant of 12 min(-)(1). When glutamine or ammonia was added to the initial reaction mixture, the magnitude and the rate of formation of the burst phase for either phosphate or ADP were unchanged, but the rate constant for the linear steady-state phase increased to an average value of 78 min(-)(1). These results demonstrate that the initial phosphorylation of bicarbonate is independent of the binding or hydrolysis of glutamine. The pre-steady-state time course for the hydrolysis of glutamine in the absence of ATP exhibited a burst of glutamate formation with a rate constant of 4 min(-)(1) when the reaction was quenched with base. In the presence of ATP and bicarbonate, the rate constant for the formation of the burst of glutamate was 1100 min(-)(1). The hydrolysis of ATP thus enhanced the hydrolysis of glutamine by a factor of 275, but there was no effect by glutamine on the initial phosphorylation of bicarbonate. The pre-steady-state time course for the formation of carbamoyl phosphate was linear with an overall rate constant of 72 min(-)(1). The absence of an initial burst of carbamoyl phosphate formation eliminates product release as a rate-determining step for CPS. Overall, these results have been interpreted to be consistent with a mechanism whereby the phosphorylation of bicarbonate serves as the initial trigger for the rest of the reaction cascade. The formation of the carboxy phosphate intermediate within the large subunit must induce a conformational change to the active site of the small subunit that enhances the hydrolysis of glutamine. Thus, ammonia is not released into the molecular tunnel until the activated bicarbonate is ready to form carbamate. The rate-limiting step for the steady-state assembly of carbamoyl phosphate is either the formation, migration, or phosphorylation of the carbamate intermediate.  相似文献   

16.
Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.  相似文献   

17.
Fan Y  Lund L  Yang L  Raushel FM  Gao YQ 《Biochemistry》2008,47(9):2935-2944
Carbamoyl phosphate synthetase (CPS) is a member of the amidotransferase family of enzymes that uses the hydrolysis of glutamine as a localized source of ammonia for biosynthetic transformations. Molecular dynamics simulations for the transfer of ammonia and ammonium through a tunnel in the small subunit of CPS resulted in five successful trajectories for ammonia transfer, while ammonium was immobilized in a water pocket inside the small subunit of the heterodimeric protein. The observed molecular tunnel for ammonia transport is consistent with that suggested by earlier X-ray crystallography and site-directed mutation studies. His-353, Ser-47, and Lys-202, around the active site center in the small subunit, function cooperatively to deliver ammonia from the site of formation to the interface with the large subunit, via the exchange of hydrogen bonds with a critical water cluster within the tunnel. The NH 3 forms and breaks hydrogen bonds to Gly-292, Ser-35, Pro-358, Gly-293, and Thr-37 in a stepwise fashion "macroscopically" as it travels through the hydrophilic passage toward the subunit interface. The potential of mean force calculations along the ammonia transfer pathway indicates a low free-energy path for the translocation of ammonia with two barriers of 3.9 and 5.5 kcal/mol, respectively. These low free-energy barriers are consistent with the delivery of ammonia from the site of formation into a water reservoir toward the exit of the tunnel and migration through the hydrophilic leaving passage, respectively. The high overall free-energy barrier of 22.4 kcal/mol for the transport of ammonium additionally substantiates that the tunnel in the small subunit of CPS is not an ammonium but an ammonia channel.  相似文献   

18.
Carbamoyl phosphate synthetase synchronizes the utilization of two ATP molecules at duplicated ATP-grasp folds to catalyze carbamoyl phosphate formation. To define the dedicated functional role played by each of the two ATP sites, we have carried out pulse/labeling studies using the synthetases from Aquifex aeolicus and Methanococcus jannaschii, hyperthermophilic organisms that encode the two ATP-grasp folds on separate subunits. These studies allowed us to differentially label each active site with [gamma-(32)P]ATP and determine the fate of the labeled gamma-phosphate in the synthetase reaction. Our results provide the first direct demonstration that enzyme-catalyzed transfer of phosphate from ATP to carbamate occurs on the more C-terminal of the two ATP-grasp folds. These findings rule out one mechanism proposed for carbamoyl phosphate synthetase, where one ATP acts as a molecular switch, and provide additional support for a sequential reaction mechanism where the gamma-phosphate groups of both ATP molecules are transferred to reactants. CP synthesis by subunit C in our single turnover pulse/chase assays did not require subunit N, but subunit N was required for detectable CP synthesis in the traditional continuous assay. These findings suggest that cross-talk between domain N and C is required for product release from subunit C.  相似文献   

19.
The change in reaction energetics of the bicarbonate-dependent ATPase reaction of Escherichia coli carbamoyl phosphate synthetase has been investigated for two site-directed mutations of the essential cysteine in the small subunit. Cysteine 269 has been proposed to facilitate the hydrolysis of glutamine by the formation of a glutamyl-thioester intermediate. The two mutant enzymes, C269S and C269G, along with the isolated large subunit, exhibit a 2-2.6-fold increase in the bicarbonate-dependent ATPase reaction relative to that observed for the wild type enzyme. In the presence of glutamine the overall enhancement is 3.7 and 9.0 for the C269G and C269S mutant enzymes, respectively. Carboxyphosphate is an intermediate in the bicarbonate-dependent ATPase reaction. The cause of the rate enhancements was investigated by measuring the positional isotope exchange rate in [gamma-18O4] ATP relative to the net rate of ATP hydrolysis. This ratio (Vex/Vchem) is a measure of the partitioning of the enzyme-carboxyphosphate-ADP complex. The partitioning ratio for the mutants is identical within experimental error to that observed for the wild type enzyme. This observation is consistent with the conclusion that the ground state for the enzyme-carboxyphosphate-ADP complex in the mutants is destabilized relative to the same complex in the wild type enzyme. If the increase in the absolute rate of ATP hydrolysis was due to a stabilization of the transition state for carboxyphosphate hydrolysis then the positional isotope exchange rate relative to the chemical hydrolysis rate would have been expected to decrease in the mutants.  相似文献   

20.
Carbamoyl-phosphate synthetase (CPS) from Escherichia coli is a heterodimeric protein. The larger of the two subunits (M(r) approximately 118,000) contains a pair of homologous domains of approximately 400 residues each that are approximately 40% identical in amino acid sequence. The carboxy phosphate (residues 1-400) and carbamoyl phosphate domains (residues 553-933) also contain approximately 79 differentially conserved residues. These are residues that are conserved throughout the bacterial evolution of CPS in one of these homologous domains but not the other. The role of these differentially conserved residues in the structural and catalytic properties of CPS was addressed by swapping segments of these residues from one domain to the other. Nine of these chimeric mutant enzymes were constructed, expressed, purified, and characterized. A majority of the mutants were unable to synthesize any carbamoyl phosphate and the rest were severely crippled. True tandem repeat chimeric proteins were constructed by the complete substitution of one homologous domain sequence for the other. Neither of the two possible chimeric proteins was structurally stable. These results have been interpreted to demonstrate that the two homologous domains in the large subunit of CPS are functionally and structurally nonequivalent. This nonequivalence is a direct result of the specific functions each of these domains must perform during the overall synthesis of carbamoyl phosphate in the wild type enzyme and the specific structural alterations imposed by the differentially conserved residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号